| 研究生: |
趙明宏 Fernando Jose De La Cruz Chavez |
|---|---|
| 論文名稱: |
圓柱後經渦漩引致振動之尾流特性研究 Wake Flow Characteristics of a Circular Cylinder Undergoing Vortex-Induced Vibration |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 共同指導教授: |
周晉成
Chou, Chin-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 外文關鍵詞: | VIV, PIV, Q Criterion, Turbulent characteristics, Coherent structures, Phase Average, Vortex |
| 相關次數: | 點閱:89 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結構疲勞破壞因結渦至振動(VIV)產生振盪導致。在過去的幾年裡,VIV 一直在被研究,主要聚焦於“鎖定”現象發生期間的振盪響應。儘管了解振動位移和氣動力作用在結構上以避免這種現象是至關重要,但了解近尾流中的行為也很重要。
本研究使用低速風洞和粒子追蹤測速系統(PIV),通過實驗研究了在 VIV 引起的氣彈力不穩定性、鎖定和非鎖定狀態下圓柱尾流的渦流結構。由熱線測速系統 (HWA) 量測得速度數據作為確認 PIV 結果可靠度的基準。相位平均技術用於使流場可視化結果更清晰,並應用 Q 準則來檢測尾流中的渦流。另外執行靜態實驗,其結果用於比較動態實驗。研究表明,在共振時,渦旋脫落頻率與結構固有頻率相匹配,此時圓柱的位移最大。隨著圓柱體的振動,自由流和振動圓柱體之間的相對速度發生變化。發現這種變化會影響渦流強度並對尾流中的渦流行為產生很大影響,特別是對渦流中心到中心線的距離以及每個連續渦流之間的距離。因此,渦流型態對圓柱體的振盪很敏感。此外,通過對流場進行統計分析,探討非靜止圓柱的紊流特性。分解相位平均速度,識別真實的速度擾動。
The instability of structures under the presence of vortex-induced vibration (VIV) can generate oscillations which may cause fatigue damage to the structure. In past years, VIV has been studied and its main focus has concerned the oscillation response during the “lock-in” phenomenon. Even though it is crucial to know the vibrating displacement and forces acting on the structure to avoid this phenomenon, understanding the behavior in the near-wake flow can be important too.
This study experimentally investigates the vortical structures in the wake of a circular cylinder during aeroelastic instability induced by VIV, at lock-in and at non-lock-in state, using a low-speed wind tunnel and a particle image velocimetry (PIV) system. The velocity data from a hot-wire anemometry (HWA) system is used as a benchmark to confirm the reliability of the PIV results. The phase average technique is used to have a clearer visualization of the flow field and the Q-criterion is applied to detect the vortices in the wake. Static experiments were also done, and the results are used for comparison. This study reveals that at resonance, the vortex shedding frequency matches that of the structural natural frequency, and the displacement of the vibrating cylinder is the largest. As the cylinder oscillates, the relative velocity between the freestream and the vibrating cylinder is altered. This alteration is found to affect the vortex strength and to have a great influence on the behaviors of the vortices in the wake, specifically on the distances of the vortex center from the centerline and the distance between each consecutive vortex. Therefore, the vortex patterns are sensitive to the oscillation of the cylinder. In addition, the turbulent characteristics of the non-stationary cylinder are explored by performing a statistical analysis of the flow. The phase-averaged velocity is decomposed, and the true velocity fluctuations are identified.
Adrian, R. (1991). Particle-imaging techniques for experimental fluid-mechanics. Annual Review of Fluid Mechanics, 23, 261-304. https://doi.org/10.1146/annurev.fluid.23.1.261
Bearman, P. W. (1965). Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. Journal of Fluid Mechanics, 21(2), 241-255. https://doi.org/10.1017/S0022112065000162
Bearman, P. W. (1969). On vortex shedding from a circular cylinder in the critical Reynolds number régime. Journal of Fluid Mechanics, 37(3), 577-585. https://doi.org/10.1017/S0022112069000735
Bearman, P. W. (1984). Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Mechanics, 16(1), 195-222. https://doi.org/10.1146/annurev.fl.16.010184.001211
Belloli, M., Giappino, S., Morganti, S., Muggiasca, S., & Zasso, A. (2015). Vortex Induced Vibrations at High Reynolds Numbers on Circular Cylinders. Ocean Engineering, 94, 140-154. https://doi.org/10.1016/j.oceaneng.2014.11.017
Bendat, J. S., & Piersol, A. G. (2011). Random data: Analysis and measurement procedures. Wiley. https://books.google.com.tw/books?id=qYSViFRNMlwC
Bevington, P. R., Robinson, D. K., Blair, J. M., Mallinckrodt, A. J., & McKay, S. (1993). Data reduction and error analysis for the physical sciences. Computers in Physics, 7(4), 415-416. https://doi.org/10.1063/1.4823194
Blevins, R. (1990). Flow-induced vibration (2nd ed.). Van Nostrand Reinhold.
Boillot, A., & Prasad, A. K. (1996). Optimization Procedure for Pulse Separation in Cross-Correlation PIV. Experiments in Fluids, 21(2), 87-93. https://doi.org/10.1007/BF00193911
Brennen, C. E. (2006). An internet book on fluid dynamics http://brennen.caltech.edu/fluidbook/Fluidbook.htm
Carlier, J., & Stanislas , M. (2005). Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. Journal of Fluid Mechanics, 535, 143-188. https://doi.org/10.1017/S0022112005004751
Chen, W.-C., & Chang, K.-C. (2018). PIV measurements in near-wake turbulent regions. Modern Physics Letters B, 32, 1840026. https://doi.org/10.1142/S0217984918400262
Comte-Bellot, G. (1976). Hot-wire anemometry. Annual Review of Fluid Mechanics, 8(1), 209-231.
Crowe, C. T., Troutt, T. R., and, & Chung, J. N. (1996). Numerical models for two-phase turbulent flows. Annual Review of Fluid Mechanics, 28(1), 11-43. https://doi.org/10.1146/annurev.fl.28.010196.000303
Druck DPI 610/615 IS: User manual K0430. (2008). (2).
Ekman, P. (2020). Important factors for accurate scale-resolving simulations of automotive aerodynamics (Publication Number 2068) [Doctoral thesis, comprehensive summary, Linköping University Electronic Press]. DiVA. Linköping. https://doi.org/10.3384/diss.diva-164926
El-Gabry, L. A., Thurman, D. R., & Poinsatte, P. E. (2014). Procedure for Determining Turbulence Length Scales Using Hotwire Anemometry.
Feng, C. C. (1968). The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders.
Friedman, A. (1997). Aeroacoustic research in the automotive industry. In Mathematics in Industrial Problems: Part 8 (pp. 154-168). Springer New York. https://doi.org/10.1007/978-1-4612-1858-6_17
Gere, J. M., & Goodno, B. J. (2012). Mechanics of Materials, SI Edition. Cengage Learning. https://books.google.com.tw/books?id=RULohOkWRxUC
Gerrard, J. H. (1966). The mechanics of the formation region of vortices behind bluff bodies. Journal of Fluid Mechanics, 25(2), 401-413. https://doi.org/10.1017/S0022112066001721
Gonzalez, R. C. (2002). Digital image processing (2 ed.). Prentice-Hall Of India Pvt. Limited. https://books.google.com.tw/books?id=iyJOPgAACAAJ
Goswami, I., Scanlan, R. H., & Jones, N. P. (1993). Vortex-induced vibration of circular-cylinders . 1: Experimental-data. Journal of Engineering Mechanics-Asce, 119(11), 2270-2287. https://doi.org/Doi 10.1061/(Asce)0733-9399(1993)119:11(2270)
Govardhan, R. N., & Williamson, C. H. K. (2006). Defining the ‘modified Griffin plot’ in vortex-induced vibration: Revealing the effect of Reynolds number using controlled damping. Journal of Fluid Mechanics, 561, 147-180. https://doi.org/10.1017/S0022112006000310
Griffin, O. M. (1995). A note on bluff body vortex formation. Journal of Fluid Mechanics, 284, 217-224. https://doi.org/10.1017/S0022112095000322
Haller, G. (2001). Response to ‘‘Comment on ‘Finding finite-time invariant manifolds in two-dimensional velocity fields’ ’’ † Chaos 11, 427 „ 2001 ...‡. Chaos (Woodbury, N.Y.), 11, 431-437. https://doi.org/10.1063/1.1374242
Hsieh, S. C., Low, Y. M., & Chiew, Y. M. (2017). Flow characteristics around a circular cylinder undergoing vortex-induced vibration in the initial branch. Ocean Engineering, 129, 265-278. https://doi.org/10.1016/j.oceaneng.2016.11.019
Hunt, J., Wray, A., & Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases, -1, 193-208.
Jeong, J., & Hussain, F. (1995). Hussain, F.: On the identification of a vortex. JFM 285, 69-94. Journal of Fluid Mechanics, 285, 69-94. https://doi.org/10.1017/S0022112095000462
Jorgensen, F. E. (2002). How to measure turbulence with hot-wire anemometers: a practical guide. Dantec Dynamics.
Khalak, A., & Williamson, C. H. K. (1997). Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 69-71, 341-350. https://doi.org/https://doi.org/10.1016/S0167-6105(97)00167-0
Khalak, A., & Williamson, C. H. K. (1999). Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. Journal of Fluids and Structures, 13(7), 813-851. https://doi.org/https://doi.org/10.1006/jfls.1999.0236
Koh, T.-Y., & Legras, B. (2002). Hyperbolic lines and the stratospheric polar vortex. Chaos (Woodbury, N.Y.), 12, 382-394. https://doi.org/10.1063/1.1480442
LabVIEW. (2021). Version 21.0 (LabVIEW 2021). National Instruments.
Lapeyre, G., Hua, B., & Legras, B. (2001). Comment on “Finding finite-time invariant manifolds in two-dimensional velocity fields” [Chaos 10, 99 (2000)]. Chaos (Woodbury, N.Y.), 11, 427-430. https://doi.org/10.1063/1.1374241
Lewandowski, R., & Pinier, B. (2016). The Kolmogorov law of turbulence what can rigorously be proved? Part II. In (pp. 71-89). https://doi.org/10.1007/978-3-319-29701-9_5
Lienhard, J. H. (1966). Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders. Technical Extension Service, Washington State University. https://books.google.com.tw/books?id=qSlQGgAACAAJ
Lin, C., Hsieh, S.-C., Lin, W.-J., & Raikar, R. (2012). Characteristics of recirculation zone structure behind an impulsively started circular cylinder. Journal of Engineering Mechanics, 138, 184-198. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000314
Lin, T.-H. (2021). Parametric study on POD analysis of near-wake flow behind circular cylinder National Cheng Kung University]. Taiwan.
Lin, W.-J., Lin, C., Hsieh, S.-C., & Dey, S. (2009). Flow characteristics around a circular cylinder placed horizontally above a plane boundary. Journal of Engineering Mechanics-asce - J ENG MECH-ASCE, 135. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:7(697)
Mannini, C., Marra, A. M., & Bartoli, G. (2014). VIV–galloping instability of rectangular cylinders: Review and new experiments. Journal of Wind Engineering and Industrial Aerodynamics, 132, 109-124. https://doi.org/10.1016/j.jweia.2014.06.021
MATLAB. (2021). Version 9.10 (R2021a). The MathWorks Inc.
Miniature Wire. (2021). Dantec Dynamics. Retrieved June 15 from https://www.dantecdynamics.com/components/hot-wire-and-hot-film-probes/dual-sensor-probe/miniature-wire/
Mulcahy, T. M. (1984). Fluid forces on a rigid cylinder in turbulent crossflow Conference: ASME winter annual meeting, New Orleans, LA, USA, 9 Dec 1984; Other Information: Portions are illegible in microfiche products, United States. https://www.osti.gov/biblio/5304767
Parkinson, G. (1989). Phenomena and modelling of flow-induced vibrations of bluff bodies. Progress in Aerospace Sciences, 26(2), 169-224. https://doi.org/https://doi.org/10.1016/0376-0421(89)90008-0
Pouransari, Z., Vervisch, L., & Johansson, A., V. (2014). Reynolds number effects on statistics and structure of an isothermal reacting turbulent wall-jet. Flow, Turbulence and Combustion, 92(4), 931-945. https://doi.org/10.1007/s10494-014-9539-3
Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T., & Kompenhans, J. (2018). PIV uncertainty and measurement accuracy. In Particle Image Velocimetry: A Practical Guide (pp. 203-241). Springer International Publishing. https://doi.org/10.1007/978-3-319-68852-7_6
Resvanis, T., Jhingran, V. G., Vandiver, J. K., & Liapis, S. (2012). Reynolds Number Effects on the Vortex-Induced Vibration of Flexible Marine Risers.
Roach, P. E. (1987). The generation of nearly isotropic turbulence by means of grids. Rolls-Royce Limited. https://books.google.com.tw/books?id=omkHMwEACAAJ
Roshko, A. (1955). On the wake and drag of bluff bodies. Journal of the Aeronautical Sciences, 22, 124-132.
Schaefer, J. W., & Eskinazi, S. (1959). An analysis of the vortex street generated in a viscous fluid. Journal of Fluid Mechanics, 6(2), 241-260. https://doi.org/10.1017/S0022112059000593
Sciacchitano, A. (2019). Uncertainty quantification in particle image velocimetry. Measurement Science and Technology, 30(9). https://doi.org/10.1088/1361-6501/ab1db8
Seyed-Aghazadeh, B., Carlson, D. W., & Modarres-Sadeghi, Y. (2017). Vortex-induced vibration and galloping of prisms with triangular cross-sections. Journal of Fluid Mechanics, 817, 590-618. https://doi.org/10.1017/jfm.2017.119
Shih, C.-L., Chen, W.-C., Chang, K.-C., & Wang, M.-R. (2016). Velocity measurements of turbulent wake flow over a circular cylinder. International Journal of Modern Physics: Conference Series, 42. https://doi.org/10.1142/S2010194516601824
Tennekes, H., & Lumley, J. L. (1989). A first course in turbulence. Butterworth. https://books.google.com.tw/books?id=_pSyuQAACAAJ
Townsend, A. A. (1976). The structure of turbulent shear flow (2 ed.). https://ui.adsabs.harvard.edu/abs/1976cup..book.....T
Williamson, C. H. K., & Govardhan, R. (2004). Vortex-induced vibrations. Annual Review of Fluid Mechanics, 36, 413-455. https://doi.org/10.1146/annurev.fluid.36.050802.122128
Williamson, C. H. K., & Roshko, A. (1988). Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 2(4), 355-381. https://doi.org/https://doi.org/10.1016/S0889-9746(88)90058-8
Zdravkovich, M. M. (1997). Flow around circular cylinders: Volume 2: Applications. OUP Oxford. https://books.google.com.tw/books?id=ApAqBlpSTtIC