簡易檢索 / 詳目顯示

研究生: 郭品岑
Kuo, Pin-Chen
論文名稱: 立體視訊系統之快速演算法及其硬體架構設計
Fast Algorithms and Their VLSI Implementation for 3D Video Systems
指導教授: 楊家輝
Yang, Jar-Ferr
劉濱達
Liu, Bin-Da
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 166
中文關鍵詞: 立體影像壓縮三維高效能視訊編碼三維立體電視基於景深立體影像生成立體匹配彩圖深度包裝格式
外文關鍵詞: 3D video coding, 3D-HEVC, 3DTV, DIBR, stereo matching, texture and depth 2D-compatible format
相關次數: 點閱:99下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,彩圖加景深之立體視訊系統已提供人們更真實的視覺體驗,為提升該立體視訊系統的使用品質,本論文完成於彩圖加景深立體視訊系統中之快速演算法及其硬體架構設計,以增進立體視訊系統之執行效能。
    首先,在立體視訊系統中,本論文針對彩圖加景深立體高效能視訊編碼(3D-HEVC)之視訊壓縮進行快速演算法設計;基於景深圖邊界與彩圖之區塊切割方式有極大相關性之下,本方法萃取了景深圖邊界,從中偵測出彩圖中不必要的區塊切割模式並省略對這些模式之搜尋計算,借此提高編碼效能。與相關研究相比,本演算法可減少約67.49%的編碼時間。
    其次,在立體匹配(Stereo Matching)部分,本文提出二階式立體匹配演算法及疊代式聚合匹配演算法;二階式立體匹配演算法是以適應性權重匹配法為基礎,首先生成出一張粗略的深度圖,接著再針對不連續區域的深度資訊進行重新計算,最後合成出一張品質良好的深度圖;疊代式聚合匹配演算法則是以疊代的方式進行權重的聚合,以減少深度資訊的計算時間;此外,本文亦將疊代式聚合匹配演算法實現成硬體,以提升整體系統的效能。
    然後,在基於景深圖之立體影像生成(DIBR)部分,本文提出以影像貼補演算法為基礎之快速立體影像生成演算法及其硬體和GPU架構;在以GPU實現的補洞演算法中,採用影像貼補的原理將洞進行分類,並依其種類以疊代的方式進行填補,藉此提高生成立體影像的正確率;在以硬體架構實現的多視角合成演算法中,本方法將影像及其深度圖中之物體邊緣部分對齊,並且採用洞的周遭資訊提升生成影像的精緻度,並且獲得更自然的立體影像。
    最後,將多視角合成演算法與疊代式聚合立體匹配演算法結合後,一個雙視角轉多視角的立體影像生成系統於本論文中被提出,此系統的最高操作頻率為160.2 MHz,並且能即時輸出 1080p影像,亦能維持影像的品質。另外,本文亦針對新的影像格式-彩圖深度包裝格式進行硬體架構設計,此設計之最高操作頻率為166.6 MHz。

    In recent years, the three-dimensional (3D) video system, which is in the representation of color texture and depth, brings users a more realistic visual experience. To enhance the video quality of the three-dimensional video system, this dissertation proposed a three-dimensional video system with fast algorithms and hardware design.
    First, a 3DVC encoding system is proposed to reduce the computational complexity of three-dimensional high-efficiency video coding (3D-HEVC) by a fast mode decision method. In this method, the boundary of the depth map is extracted and applied for the unit partition mode detection before the partition for color texture coding. Compared with the related researches, this algorithm can reduce about 67.49% encoding time.
    Finally, in stereo matching computation, adaptive support weight with census transform-based algorithm is then proposed to estimate the depth map. In the adaptive support weight method, a two-stage method is proposed to reduce the computation. A rough depth map is rapidly generated in the first stage while an adaptive refinement method for each case is applied in the second stage. The computation time is reduced by about 85%. In the census transform based algorithm, an iterative aggregation process is proposed which reduces complexity and is suitable for hardware realization. Furthermore, the corresponding VLSI is provided, and the speed achieves 60 fps with 1080p resolution.
    For the depth image-based rendering (DIBR) system, two inpainting-based algorithms are proposed for nine views rendering and multi-view rendering, respectively. The nine views rendering DIBR method is implemented on the GPU which can increase the rendering speed. For the multi-view rendering, a patch-matched hole filling algorithm is proposed, where the best patch is searched with adaptive window size in the surrounding region to fill the holes. This work can support 1080p video in real-time at maximum operating frequency 160.2 MHz. This dissertation also proposed a hardware architecture for a new texture plus depth format-2Dcompatible packing and de-packing format. For the architecture, the operation frequency can reach 166.56 MHz, which can support the maximum frame size up to FHD in real-time.

    Abstract (Chinese) i Abstract (English) iii Acknowledgement v Table of Contents ix List of Figures xiii List of Tables xvii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization of the Dissertation 6 Chapter 2 Basic Concepts of 3D Video Systems 8 2.1 Overview of 3D Video Systems 8 2.2 2D-Compatible Formats 9 2.2.1 2D-compatible Vertical Packing and De-packing Process 9 2.2.2 2D-compatible Horizontal Packing and De-packing Process 12 2.3 3D HEVC 13 2.4 Stereo Matching 17 2.4.1 Matching Cost Computation 17 2.4.2 Cost Aggregation 19 2.4.3 Disparity Optimization 22 2.4.4 Disparity Refinement 22 2.5 Depth Image-Based Rendering 23 2.5.1 Depth Preprocessing 23 2.5.2 3D Warping 24 2.5.3 Hole Filling 24 Chapter 3 Depth Edge Based 3DVC Encoding Algorithms 27 3.1 Partition Mode Analyzing 29 3.2 Depth Preprocessing 31 3.3 Fast CU Partitioning 32 3.4 Fast PU Partitioning 36 3.4.1 Block-based PU Partitioning 36 3.4.2 Line-based PU Partitioning 37 3.4.3 Region-based PU Partitioning 38 3.4.4 Fast Asymmetric Motion Partitioning 39 3.5 Search Range Reduction 42 3.6 Experimental Results 44 3.6.1. Fast CU Partitioning 45 3.6.2 Fast PU Partitioning 45 3.6.3 Search Range Reduction 47 3.6.4 Fast Coding System Configurations 48 Chapter 4 Stereo Matching Algorithms and the Hardware Architecture 55 4.1 Adaptive Support Weight-based Algorithm 55 4.1.1 Rough Depth Map Computation 56 4.1.2 Depth Map Re-computation 62 4.1.3 Disparity Refinement 64 4.2 Census Transform-based Algorithm 66 4.2.1 Modified Census Cost 67 4.2.2 Iterative Aggregation and Disparity Decision 69 4.2.3 Left Right Check and Refinement 71 4.2.4 Hardware Architecture of Stereo Matching 73 4.3 Simulation Results 78 Chapter 5 Depth Image Based Rendering 82 5.1 Nine Views Rendering Algorithm and its GPU Implementation 83 5.1.1 Texture-based Interpolation Crack Filling 84 5.1.2 Fast Dis-occlusion Inpainting 88 5.1.3 Fast Hole Filling Using Reference Views 96 5.1.4 GPU Implementation 99 5.2 Multi-view Rendering Algorithm 102 5.2.1 Depth Map Preprocessing 103 5.2.2 3D Warping 105 5.2.3 Hole Filling for Interpolation 106 5.2.4 Hole Filling for Extrapolation 107 5.2.5 Interlacing of View Subpixels 111 5.2.6 Hardware Architectures of the Multi-view Rendering Algorithm 112 5.3 Stereo-view to Multi-view System 116 5.4 Simulation Results 117 5.4.1 Simulation Results of Nine Views Rendering Algorithm 117 5.4.2 Simulation Results of multi-view rendering DIBR Algorithms 119 5.4.3 Results of Stereo-view to Multi-view Conversion System 120 Chapter 6 Advanced 3D Format Generation Hardware Architecture 123 6.1 2D-compatible Vertical Packing and De-packing Architecture 123 6.1.1 Filter 125 6.1.2 Filter Design for Up-sampling 126 6.1.3 Filter Design for Down-sampling 129 6.1.4 Hardware Architecture of Vertical Packing and De-packing 132 6.2 2D-compatible Horizontal Packing and De-packing Architecture 134 6.3 Simulation Results 137 6.3.1 Simulation Results of 2D-compatible Vertical Format 137 6.3.2 Simulation Results of 2D-compatible Horizontal format 139 Chapter 7 Conclusions and Future Work 143 7.1 Conclusions 143 7.2 Future Work 147 References 148 Publication and Award List 163

    [1] C. Fehn, K. Hopf, and B. Quante, “Key technologies for an advanced 3D TV system,” Proc. SPIE, Three-Dimensional TV, Video, and Display Ⅲ, vol. 5599, pp. 66–80, Dec. 2004.
    [2] C. Fehn, R. D. L. Barre, and S. Pastoor, “Interactive 3DTV: concepts and key technologies,” Proc. IEEE, vol. 94, no. 3, pp. 524–538, Mar. 2006.
    [3] ISO/IEC JTC1/SC29/WG11 M8595, “FTV-free viewpoint television,” July 2002.
    [4] T. Fujii and M. Tanimoto, “Free-viewpoint TV system based on ray-space representation,” in Proc. SPIE ITCom, Mississippi, USA, Mar. 2002, pp. 175–189.
    [5] A. Smolic, K. Mueller, P. Merkle, T. Rein, M. Kautmer, P. Eisert, and T. Wiegan, “Free viewpoint video extraction, representation, coding, and rendering,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Singapore, Oct. 2004, pp. 3287–3290.
    [6] M. Tanimoto, “FTV (free viewpoint television) for 3D scene reproduction and creation,” in Proc. IEEE Comput. Vision, Pattern Recognition Workshop (CVPRW), New York, USA, June 2006, pp. 172–172.
    [7] M. Tanimoto, “FTV (free viewpoint television) creating ray-based image engineering,” ECTI Trans. Elect. Eng., Elect. Commun., vol. 6, pp. 3–14, Feb. 2008.
    [8] M. Tanimoto, “Overview of free viewpoint television,” Signal Process. Image Commun., vol. 21, pp. 454–461, July 2006.
    [9] F. Isgrò, E. Trucco, P. Kauff, and O. Schreer, “Three-dimensional image processing in the future of immersive media,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 3, pp 388–303, Mar. 2003.
    [10] A. Smolic and P. Kauff, “Interactive 3-D video representation and coding technologies,” Proc. IEEE, vol. 93, no. 1, pp. 98–110, Jan. 2005.
    [11] K. Muller, P. Merkle, and T. Wiegand, “3-D video representation using depth maps,” Proc. IEEE, vol. 99, no. 4, pp. 643–656, Mar. 2011.
    [12] ITU-T Rec. H.261, “Video codec for audiovisual services at p × 64 kbits/s,” Dec. 1990.
    [13] ITU-T Rec. H.262 and ISO/IEC 13818-2, “Information technology—generic coding of moving pictures and associated audio information: video,” July 1995.
    [14] ITU-T Rec. H.263, “Video coding for low bit rate communication,” Mar. 1996.
    [15] ISO/IEC 11172-2, “Information technology—coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s—part 2: video,” Aug. 1993.
    [16] ISO/IEC 14496-2, “Information technology—coding of audio-visual objects—part 2: visual,” Jan. 1999.
    [17] ITU-T Rec. H.264 and ISO/IEC 14496-10, “Advanced video coding for generic audiovisual services,” May 2003.
    [18] P. C. Kuo, B. D. Liu, and J. F. Yang, “A new disparity/motion vector predictor search algorithm for stereo video coding,” in Proc. Int. Conf. 3D Syst. Appl. (3DSA), Hsinchu, Taiwan, June 2012, Paper #P9-4, pp. 496–500.
    [19] P. C. Kuo, B. D. Liu, and J. F. Yang, “Epipolar line search for fast H.264/MVC encoding,” in Proc. Int. Conf. Commun. Circuit Syst. (ICCCAS), Taichung, Taiwan, Aug. 2012, pp. 34–37.
    [20] P. C. Kuo, Y. N. Hsu, B. D. Liu, and J. F. Yang, “A projection based search algorithm for fast H.264/MVC encoding,” in Proc. Int. Conf. 3D Syst. Appl. (3DSA), Seoul. Korea, May 2014, Paper #013.
    [21] ISO/IEC JTC1/SC29/WG11 N9784, “Introduction to 3D video,” May 2008.
    [22] ISO/IEC JTC1/SC29/WG11 N12035, “Application and requirements on 3D video coding,” Mar. 2011.
    [23] ITU-T Rec. H.265 and ISO/IEC 23008-2, “High efficiency video coding (HEVC),” Jan. 2013.
    [24] K. Ugur, K. Andersson, A. Fuldseth, G. Bjontegaard, L. P. Endresen, J. Lainema, A. Hallapuro, J. Ridge, D. Rusanovskyy, C. Zhang, A. Norkin, C. Priddle, T. Rusert, J. Samuelsson, R. Sjoberg, and Z. Wu, “High performance, low complexity video coding and the emerging HEVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 12, pp 1688–1697, Jan. 2011.
    [25] “High Efficiency Video Coding (HEVC),” http://hevc.hhi.fraunhofer.de/, accessed May 2013.
    [26] “H.265.net,” http://www.h265.net/, accessed Oct. 2013.
    [27] “JCT-VC Document Management System,” http://phenix.int-evry.fr/jct/, accessed Oct. 2013.
    [28] T. Tian, X. Jiang, and C. Wang, “Analysis of the encoding efficiency of 3D HEVC,” in Proc. Int. Conf. Multimedia Tech. (ICMT), Guangzhou, China, Dec. 2013, pp. 1388–1395.
    [29] ISO/IEC JTC1/SC29/WG11 and MPEG2011/N12559, “Test model under consideration for HEVC based 3D video coding,” Feb. 2012.
    [30] “JCT-3V Document Management System,” http://phenix.int-evry.fr/jct2/, accessed Oct. 2013.
    [31] D. Kim, D. Min, and K. Sohn, “A stereoscopic video generation method using stereoscopic display characterization and motion analysis,” IEEE Trans. Broadcast., vol. 54, no. 2, pp. 188–197, June 2008.
    [32] J. Lee, S. Yoo, C. Kim, and B. Vasudev, “Estimating scene-oriented pseudo depth with pictorial depth cues,” IEEE Trans. Broadcast., vol. 59, no. 2, pp. 238–250, June 2013.
    [33] M. T. Pourazad, P. Nasiopoulos, and R. K. Ward, “An H.264-based scheme for 2D to 3D video conversion,” IEEE Trans. Consumer Electron., vol. 55, no. 2, pp. 742–748, May 2009.
    [34] Y. Feng, J. Ren, and J. Jiang, “Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications,” IEEE Trans. Broadcast., vol. 57, no. 2, pp. 500–509, June 2011.
    [35] M. C. Yang, J. Y. Liu, Y. C. Yang, and K. H. Chen, “A quality-improved stereo matching by using incrementally-averaging orthogonally-scanned edge detection,” in Proc. Int. Conf. 3D Syst. Appl. (3DSA), Hsinchu, Taiwan, June 2012, pp. 489–491.
    [36] K. Zhang, J. Lu, and G. Lafruit, “Cross-based local stereo matching using orthogonal integral images,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 7, pp. 1073–1079, July 2009.
    [37] C. Fehn, “Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV,” Proc. SPIE, Stereosc. Displays Virt. Reality Syst. XI, vol. 5291, pp. 93–104, Jan. 2004.
    [38] Y. C. Fan and T. C. Chi, “The novel non-hole-filling approach of depth image based rendering,” in Proc. IEEE 3DTV Conf. (3DTV-CON), Istanbul, Turkey, May 2008, pp. 325–328.
    [39] C. Fehn, “A 3D-TV approach using depth-image-based rendering (DIBR),” in Proc. Vis., Imaging, and Image Process. (VIIP), Benalmádena, Spain, Sep. 2003, pp. 482–487.
    [40] J. F. Yang, H. M. Wang and A. T. Chiang, “2D Backwards Compatible Centralized Color-Depth Packing,”, Joint Collaborative Team on 3D Video Coding Extensions of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, the 6th Meeting: Document: JCT3V-F0087, Geneva, Nov. 2013.
    [41] H. Schwarz, C. Bartnik, and S. Bosse, “3D video coding using advanced prediction, depth modeling, and encoder control methods,” in Proc. IEEE Picture Coding Symp. (PCS), Krakow, Poland, May 2012, pp. 1–4.
    [42] J. W. Kang, Y. Chen, and L. Zhang, “Low complexity neighboring block based disparity vector derivation in 3D-HEVC,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Melbourne, Australia, June 2014, pp. 1921–1924.
    [43] Q. Zhang, N. Li, and L. Huang, “Effective early termination algorithm for depth map intra coding in 3D-HEVC,” Electron. Lett., vol. 50, no. 14, pp 994–996, July 2014.
    [44] Z. Gu, J. Zheng, and N. Ling, “Fast depth modeling mode selection for 3D HEVC depth intra coding,” in Proc. IEEE Int. Conf. Multimedia Expo Workshop(ICMEW), San Jose, USA, July 2013, pp. 1–4.
    [45] H. R. Tohidypour, M. T. Pourazad, and P. Nasiopoulos, P, “A content adaptive complexity reduction scheme for HEVC-based 3D video coding,” in Proc. Int. Conf. Digital Signal Process. (DSP), Fira, Greece, July 2013, pp. 1–5.
    [46] G. Chi, X. Jin, and Q. Dai, “A quad-tree and statistics based fast CU depth decision algorithm for 3D-HEVC,” in Proc. IEEE Int. Conf. Multimedia Expo Workshop (ICMEW), Chengdu, China, July. 2014, pp. 1–5.
    [47] K. H. Lu, “Depth edge-based fast 3DVC encoding algorithms,” M.S. thesis, National Cheng Kung University, Tainan, Taiwan, July 2013.
    [48] Y. C. Chang, T. H. Tsai, B. H. Hsu, Y. C. Chen, and T. S. Chang, “Algorithm and architecture of disparity estimation with min-census adaptive support weight,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 6, pp. 792–805, June 2010.
    [49] K. J. Yoon and S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Trans. Pattern Anal. Machine Intell., vol. 28, no. 4, pp. 650–656, Apr. 2006.
    [50] T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive window: theory and experiment,” IEEE Trans. Pattern Anal. Machine Intell., vol. 16, no. 9, pp. 920–932, Sept. 1994.
    [51] Y. Boykov, O. Veksler, and R. Zabih, “A variable window approach to early vision,” IEEE Trans. Pattern Anal. Machine Intell., vol. 20, no. 2, pp. 1283–1294, Dec. 1998.
    [52] O. Veksler, “Stereo correspondence with compact windows via minimum ratio cycle,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 12, pp. 1654–1660, Dec. 2002.
    [53] Z. Ke, L. Jiangbo, and G. Lafruit, “Cross-based local stereo matching using orthogonal integral images,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 7, pp. 1073–1079, July 2009.
    [54] C. Georgoulas and I. Andreadis, “A real-time occlusion aware hardware structure for disparity map computation,” in Proc. Int. Conf. Image Anal. Process. (ICIAP), Vietri sul Mare, Italy, Sept. 2009, pp. 721–730.
    [55] K. Ambrosch, M. Humenberger, W. Kubinger, and A. Steininger, “SAD-based stereo matching using FPGAs,” in Embedded Computer Vision Part II, vol. 6, B. Kisacanin, Ed. London, UK: Spinger, 2009, pp. 121–138.
    [56] A. Darabiha, J. MacLean, and J. Rose, “Reconfigurable hardware implementation of a phase correlation stereo algorithm,” Mach. Vision Appl., vol. 17, no. 2, pp. 116–132, Mar. 2006.
    [57] D. W. Yang, L. C. Chu, C. W. Chen, J. Wang, and M. D. Shieh, “Depth-reliablity-based stereo matching algorithm and its VLSI architecture design,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 6, pp. 1038–1050, Oct. 2014.
    [58] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S. K. Park, M. Kim, and J. W. Jeon, “FPGA design and implementation of a real-time stereo vision system,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 1, pp. 15–26, Jan. 2010.
    [59] K. Ambrosch and W. Kubinger, “Accurate hardware-based stereo vision,” Comput. Vis. Image Und., vol. 114, no. 11, pp. 1303–1316, Nov. 2010.
    [60] C. Ttofis and T. Theocharides, “Towards accurate hardware stereo correspondence: A real-time FPGA implementation of a segmentation-based adaptive support weight algorithm,” in Proc. IEEE Conf. Design, Autom. Test. (DATE), Dresden, Germany, Mar. 2012, pp. 703–708.
    [61] W. Q. Wang, J. Yan, N. Y. Xu, Y. Wang, and F. H. Hsu, “Real-time high-quality stereo vision system in FPGA,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 10, pp. 1–14, Oct. 2015.
    [62] C. Zhu and S. Li, “Multiple reference views for hole reduction in DIBR view synthesis,” in Proc. IEEE Int. Symp. Broadband Multimedia Syst., Broadcast. (BMSB), Beijing, China, June 2014, pp. 1–5.
    [63] C. Zhu and S. Li, “A new perspective on hole generation and filling in DIBR based view synthesis in Proc. Int. Conf. Intell. Inform. Hiding and Multimedia Signal Process.(IIH-MSP), Beijing, China, Oct. 2014, pp. 607–610.
    [64] C. Zhu and S. Li, “Depth image based view synthesis: new insights and perspectives on hole generation and filling,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 82–93, Mar. 2016.
    [65] M. Solh and G. AlRegib, “Hierarchical hole-filling (HHF): depth image based rendering without depth map filtering for 3D-TV,” in Proc. IEEE Int. Workshop Multimedia Signal Process. (MMSP), Saint-Malo, France, Oct. 2010, pp. 87–92.
    [66] M. S. Ko, D. W. Kim, D. L. Jones, and J. Yoo, “A new common-hole filling algorithm for arbitrary view synthesis,” in Proc. Int. Conf. 3D Syst. Appl. (3DSA), Hsinchu, Taiwan, June 2012, pp. 242–245.
    [67] I. Daribo and H. Saito, “A novel inpainting-based layered depth video for 3DTV,” IEEE Trans. Broadcast., vol. 57, no. 2, pp. 533–541, June 2011.
    [68] P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman, P. Merkle, K. Muller, and T. Wiegand, “Depth image-based rendering with advanced texture synthesis for 3-D video,” IEEE Trans. Multimedia, vol. 13, no. 3, pp. 453–465, June 2011.
    [69] A. Criminisi, P. Perez, and K. Toyama, “Region filling and object removal by exemplar-based image inpainting,” IEEE Trans. Image Process., vol. 13, no. 9, pp. 1200–1212, Sept. 2004.
    [70] H. Q. Shan, W. D. Chien, H. M. Wang, and J. F. Yang, “A homography-based inpainting algorithm for effective depth image based rendering,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Paris, France, Oct. 2014, pp. 5412–5416.
    [71] S. Reel, G. Cheung, P. Wong, and L. S. Dooley, “Joint texture-depth pixel inpainting of disocclusion holes in virtual view synthesis,” in Proc. Asia-Pacific Signal Inform. Process. Assoc. Annu. Summit Conf. (APSIPA ASC), Kaohsiung, Taiwan, Oct. 2013, pp. 1–7.
    [72] P. C. Lee and E. Su, “Nongeometric distortion smoothing approach for depth map preprocessing,” IEEE Trans. Multimedia, vol. 13, no. 2, pp. 246–254, Apr. 2011.
    [73] L. Zhang and W. J. Tam, “Stereoscopic image generation based on depth images for 3DTV,” IEEE Trans. Broadcast., vol. 50, no. 2, pp. 191–199, May 2005.
    [74] C. Cheng, J. Liu, H. Yuan, X. H. Yang, and W. Liu, “A DIBR method based on inverse mapping and depth aided image inpainting,” in Proc. IEEE China Summit Int. Conf. Signal Inform. Process. (ChinaSIP), Beijing, China, July 2013, pp. 518–522.
    [75] I. Ahn and C. Kim, “Depth-based disocclusion filling for virtual view synthesis,” in Proc. IEEE Int. Conf. Multimedia Expo Workshops (ICMEW), Melbourne, Australia, July 2012, pp. 109–114.
    [76] K. Luo, D. X. Li, Y. M. Feng, and M. Zhang, “Depth-aided inpainting for disocclusion restoration of multiview images using depth-image-based rendering,” J. Zhejiang University - Science A, vol. 10, no. 12, pp. 1738–1749, Dec. 2009.
    [77] L. Ma, L. Do, and P. With, “Depth-guided inpainting algorithm for free-viewpoint video,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Florida, U.S.A., July 2012, pp. 1721–1724.
    [78] O. L. Meur, J. Gautier, and C. Guillemot, “Examplar-based inpainting based on local geometry,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Brussels, Belgium, Sept. 2011, pp. 3401–3404.
    [79] P. C. Kuo, K. H. Lu, Y. N. Hsu, B. D. Liu, and J. F. Yang, “Fast 3DVC encoding algorithms based on edge information of depth map,” IET Image Process., vol. 9, no. 7, pp. 587–595, July 2015.
    [80] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 8, pp. 679–698, Nov. 1986.
    [81] P. C. Kuo, Y. N. Hsu, K. H. Lu, B. D. Liu, and J. F. Yang, “Depth-edge based prediction algorithms for fast unit partitioning in 3DV-HTM coding,” in Proc. Int. Conf. 3D Syst. Appl. (3DSA), Seoul. Korea, May 2014, Paper #065.
    [82] P. C. Kuo, K. H. Lu, B. D. Liu, and J. F. Yang, “An fast edge-based motion search algorithm for video-plus-depth format in 3DV-HTM coding,” in Proc. VLSI Design/CAD Symp.(VLSI/CAD), Kaohsiung, Taiwan, Aug. 2013, Paper #18-3.
    [83] “HEVC 3D Extension Software Repository (HHI),” https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/, accessed Oct. 2013.
    [84] ITU-T SC16/Q6, “Calculation of average PSNR differences between RD-curves,” Apr. 2001.
    [85] ISO/IEC JTC1/SC29/WG11 and MPEG2011/N12036, “Call for proposals on 3D video coding technology,” Mar. 2011.
    [86] H. W. Ho, P. C. Kuo, C. C. Tien, B. D. Liu, and J. F. Yang, “A fast stereo matching algorithm with simple edge detection,” in Proc. VLSI Design/CAD Symp.(VLSI/CAD), Taichung, Taiwan, Aug. 2014, Paper #S08-01.
    [87] P. C. Kuo, P. L. Chu, B. D. Liu, and J. F. Yang, “A stereo matching algorithm with fast disparity propagation under homogeneous texture detection,” in Proc. Int. Conf. 3D Syst. Appl. (3DSA), Osaka, Japan, June 2013, Paper #P3-2, pp. 1–4.
    [88] A. Aysu, M. Sayinta, and C. Cigla, “Low cost FPGA design and implementation of a stereo matching system for 3D-TV applications,” in Proc. IEEE Conf. Very Large Scale Integr. (VLSI-SoC), Istanbul, Turkey, Oct. 2013, pp. 204–209.
    [89] T. C. Yang, P. C. Kuo, B. D. Liu, and J. F. Yang, “Depth image-based rendering with edge-oriented hole filling for multiview synthesis,” in Proc. Int. Conf. Commun. Circuit Syst. (ICCCAS), Taichung, Taiwan, Aug. 2012, pp. 50–53.
    [90] P. C. Kuo, J. M. Lin, B. D. Liu, and J. F. Yang, “High efficiency depth image-based rendering with simplified inpainting-based hole filling,” Multidim. Syst., Signal Process., vol. 27, no. 3, pp. 623–645, Apr. 2016.
    [91] P. C. Kuo, J. M. Lin, B. D. Liu, and J. F. Yang, “Inpainting-based multi-view synthesis algorithms and its GPU accelerated implementation,” in Proc. Int. Conf. Inform. Commun. Circuits Syst. (ICICS), Tainan, Taiwan, Dec. 2013, Paper #Th11.3-P0112.
    [92] “SIMD,” http://arstechnica.com/features/2000/03/simd/, accessed Oct. 2014.
    [93] J. Sanders and E. Kandrot, CUDA By Example: An Introduction to General-Purpose GPU Programming. Upper Saddle River, NJ: Addison-Wesley, 2010.
    [94] ISO/IEC JTC1/SC29/WG11, “View synthesis algorithm in view synthesis reference software (VSRS3.5) ,” 2008
    [95] M. Xi, L. H. Wang, Q. Q. Yang, D. X. Li, and M. Zhang, “Depth-image-based rendering with spatial and temporal texture synthesis for 3DTV,” EURASIP J. Image, Video Process., vol. 2013:9, pp. 1–18, Jan. 2013.
    [96] K. Oh, S. Yea, and Y. Ho, “Hole filling method using depth based in-painting for view synthesis in free viewpoint television and 3-d video,” in Proc. IEEE Picture Coding Symp. (PCS), Chicago, USA, May 2009, pp. 1–4.
    [97] W. J. Tam, G. Alain, L. Zhang, T. Martin, and R. Renaud, “Smoothing depth maps for improved stereoscopic image quality,” Proc. SPIE, Three-Dimensional TV, Video, and Display Ⅲ, vol. 5599, pp. 162–172, Dec. 2004.
    [98] L. H. Wang, J. Zhang, S. J. Yao, D. X. Li, and M. Zhang, “GPU based implementation of 3DTV system,” in Proc. Int. Conf. Image and graphics (ICIG), Anhui, China, Aug. 2011, pp. 847–851.
    [99] L. J. Pan, Y. L. Zhu, Z. W. Qian, Q. Chen, and Y. Hong, “Real-time virtual view synthesis based on GPU parallel programming,” in Proc. Chinese Contr. and Decision Conf. (CCDC), Qingdao, China, May 2015, pp. 3687–3690.
    [100] L. Do, G. Bravo, S. Zinger, and P. H. N. De With, “GPU-accelerated real-time free-viewpoint DIBR for 3DTV,” IEEE Trans. Consumer Electron., vol. 58, no. 2, pp. 633–640, July 2012.
    [101] S. J. Yao, P. F. Jin, H. Fu, D. X. Li, L. H. Wang, and M. Zhang, “Real-Time 3DTV System for Autostereoscopic Displays,” in Proc. Int. Conf. Audio, Language, Image Process.(ICALIP), Shanghai, China, July 2012, pp. 621–626.
    [102] M. Schaffner, F. K. G¨urkaynak, P. Greisen, H. Kaeslin, L. Benini, and A. Smolic, “Hybrid ASIC/FPGA system for fully automatic stereo-to-multiview conversion using IDW,” IEEE Trans. Circuits Syst. Video Technol., [Online]. DOI: 10.1109/TCSVT.2015.2501640.
    [103] N. Stefanoski, O. Wang, M. Lang, P. Greisen, S. Heinzle, and A. Smolic, “Automatic view synthesis by image-domain-warping,” IEEE Trans. Image Process., vol. 22, no. 9, pp. 3329–3341, Sept. 2013.
    [104] S. J. Yao, P. F. Jin, H. Fu, L. H. Wang, D. X. Li, and M. Zhang, “Real-time 3DTV system for autostereoscopic displays,” in Proc. Int. Conf. Audio Language Image Process. (ICALIP), Shanghai, China, July 2012, pp. 621–626.
    [105] A. Akin, R. Capoccia, J. Narinx, J. Masur, A. Schmid, and Y. Leblebici, “Real-time free viewpoint synthesis using three-camera disparity estimation hardware,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Lisbon, Portugal, May 2015, pp. 2525–2528.
    [106] P. C. Kuo, A. J. Lin, B. D. Liu, and J. F. Yang, “An advanced video and depth de-packing architecture for 3D applications,” J. Inform. Sci., Eng., vol. 31, no. 5, pp. 1537–1555, Sept. 2015.
    [107] E. Angel and A. Jain, “A nearest neighbors approach to multidimensional filtering,” in Proc. IEEE Conf. Decision Contr. (ICDC), Louisiana, U.S.A., Dec. 1972, pp.13–15.
    [108] H. C. Andrews and C. L. Patterson, “Digital interpolation of discrete images,” IEEE Trans. Comput., vol. 25, no. 2, pp. 196–202, Feb. 1976.
    [109] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 6, pp. 1153–1160, Dec. 1981.
    [110] S.E. Recichenbach and F. Geng, “Two-dimensional cubic convolution,” IEEE Trans. Image Process., vol. 12, no. 8, pp. 857–865, Aug. 2003.
    [111] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Trans. Image Process., vol. 10, no. 10, pp. 1521–1527, Oct. 2001.
    [112] P. C. Kuo, Y. N. Hsu, B. D. Liu, and J. F. Yang, “A projection based search algorithm for fast H.264/MVC encoding,” in Proc. Int. Conf. 3D Syst. Appl. (3DSA), Seoul. Korea, May 2014, Paper #013.
    [113] P. C. Kuo, Y. N. Hsu, K. H. Lu, B. D. Liu, and J. F. Yang, “Depth-edge based prediction algorithms for fast unit partitioning in 3DV-HTM coding,” in Proc. Int. Conf. 3D Syst. Appl. (3DSA), Seoul. Korea, May 2014, Paper #065.
    [114] H. S. Hou and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust., Speech, Signal Process., vol. 26, no. 6, pp. 508–517, Dec. 1978.
    [115] A. S. Glassner, Graphics Gems. Cambridge, MA: Academic Press, 1990, pp. 147–165.

    下載圖示 校內:2021-07-31公開
    校外:2021-07-31公開
    QR CODE