簡易檢索 / 詳目顯示

研究生: 孫煜明
Suen, Yu-Ming
論文名稱: 微微衛星姿態控制次系統之設計與模擬
Design and Simulation of a Picosatellite Attitude Control Subsystem
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 70
中文關鍵詞: 姿態控制三軸穩定
外文關鍵詞: Attitude Control, 3-Axis Stabilization
相關次數: 點閱:78下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PACE衛星是國內第一顆實現三軸穩定的微微衛星。在本論文中,主要是針對PACE衛星的姿態控制次系統來進行設計與模擬,根據設計的目標為軌道高度600公里,傾斜角98度,5度以內的地球指向精度,選擇採用動斜偏斜控制系統為姿態控制次系統的主要架構,在Y軸安裝一個動量飛輪,控制衛星俯仰的角度,並且提供X軸與Z軸的穩定,另外再搭配三個軸上的磁力線圈,消除章動與進動的現象,增加指向精度,以及對動量飛輪做動量卸除的功能,使動量飛輪不會到達飽和的狀態。設計的方法為先針對衛星的軌道做模擬,估算出環境干擾力矩的數值,然後計算控制器的參數,最後才對整個控制次系統進行模擬,並對模擬的結果來做分析。

    PACE satellite is the first indigenous Picosat that attempts to achieve 3-axis stabilization. In this thesis, the design and simulation of the attitude control subsystem of the PACE satellite are presented. The requirement is to achieve 5 degree earth pointing accuracy at 600 km altitude, 98 degree inclination orbit. A momentum-biased control system is employed to control the pitch angle and stabilize the roll/yaw dynamics. In addition, three orthogonal magnetic coils are used to damp the angular rate after separation, eliminate nutation and precession phenomena, and prevent the momentum wheel from saturation. Through analysis and simulation, it is shown that a 5° attitude control requirement can be achieved.

    中文摘要……………………………………………………………i 英文摘要………………………………………………………… ii 目錄………………………………………………………………iii 圖目錄………………………………………………………………v 表目錄………………………………………………………… viii 第一章 緒論 1.1 文獻回顧………………………………………………… 1 1.2 研究目的與方法………………………………………… 1 1.3 論文架構………………………………………………… 3 第二章 衛星姿態控制理論回顧 2.1 座標系統之定義與轉換………………………………… 4 2.1.1 地球慣性座標……………………………………… 4 2.1.2 地球固定座標……………………………………… 4 2.1.3 軌道座標…………………………………………… 5 2.1.4 體座標……………………………………………… 6 2.1.5 座標轉換…………………………………………… 6 2.2 四元素與姿態矩陣之定義與轉換……………………… 8 2.3 地球磁場演算法………………………………………… 9 2.4 刻卜勒(Kepler)方程式演算法…………………………14 2.5 太空中的環境力矩………………………………………16 2.5.1 重力梯度力矩………………………………………16 2.5.2 空氣動力力矩………………………………………18 2.5.3 太陽輻射力矩………………………………………19 2.5.4 磁干擾力矩…………………………………………20 第三章 PACE衛星之姿態控制 3.1 衛星姿態控制次系統……………………………………21 3.2 衛星動態方程式與運動方程式…………………………22 3.3 姿態控制法則……………………………………………26 3.3.1 磁力矩控制…………………………………………27 3.3.2 B-dot控制法則…………………………… ………27 3.3.3 動量飛輪控制法則…………………………………29 3.3.4 動量卸除控制法則…………………………………30 3.3.5 指向控制法則………………………………………31 第四章 模擬結果 4.1 系統參數…………………………………………………32 4.2 程式模擬…………………………………………………36 4.3 模擬結果…………………………………………………38 第五章 結論與未來工作 5.1 結論………………………………………………………64 5.2 未來工作…………………………………………………65 參考文獻………………………………………………………… 66 附錄A PACE衛星姿態控制次系統硬體規格……………………69 圖2.1 ECI與ECEF座標示意圖…………………………………5 圖2.2 軌道座標示意圖……………………………………… 6 圖2.3 體座標示意圖………………………………………… 6 圖2.4 尤拉角1-2-3旋轉………………………………………8 圖2.5 磁場B在空間中的分量方向………………………… 12 圖2.6 橢圓與軌道示意圖……………………………………14 圖2.7 軌道面與赤道面………………………………………16 圖2.8 重力梯度力矩示意圖…………………………………17 圖4.1 各次系統擺放位置……………………………………32 圖4.2 衛星軌跡模擬圖………………………………………34 圖4.3 環境干擾力矩模擬圖…………………………………34 圖4.4 程式模擬流程…………………………………………37 圖4.5 安全模式的控制流程…………………………………37 圖4.6 一般模式的控制流程…………………………………38 圖4.7 安全模式(1)衛星角速度模擬圖…………………… 42 圖4.8 安全模式(1)磁偶極矩模擬圖……………………… 42 圖4.9 安全模式(1)磁控制力矩模擬圖…………………… 43 圖4.10 安全模式(1)環境干擾力矩模擬圖………………… 43 圖4.11 安全模式(2)衛星角速度模擬圖…………………… 44 圖4.12 安全模式(2)磁偶極矩模擬圖……………………… 44 圖4.13 安全模式(2)磁控制力矩模擬圖…………………… 45 圖4.14 安全模式(2)環境干擾力矩模擬圖………………… 45 圖4.15 安全模式(3)衛星角速模擬圖……………………… 46 圖4.16 安全模式(3)磁偶極矩模擬圖……………………… 46 圖4.17 安全模式(3)磁控制力矩模擬圖…………………… 47 圖4.18 安全模式(3)環境干擾力矩模擬圖………………… 47 圖4.19 一般模式(1)衛星角速度模擬圖…………………… 48 圖4.20 一般模式(1)動量飛輪轉速模擬圖………………… 48 圖4.21 一般模式(1)動量卸除控制磁偶極矩模擬圖……… 49 圖4.22 一般模式(1)指向控制磁偶極矩模擬圖…………… 49 圖4.23 一般模式(1)輸出磁偶極矩模擬圖………………… 50 圖4.24 一般模式(1)所有力矩模擬圖……………………… 50 圖4.25 一般模式(1)環境干擾力矩模擬圖………………… 51 圖4.26 一般模式(1)衛星尤拉角模擬圖…………………… 51 圖4.27 一般模式(2)衛星角速度模擬圖…………………… 52 圖4.28 一般模式(2)動量飛輪轉速模擬圖………………… 52 圖4.29 一般模式(2)動量卸除控制磁偶極矩模擬圖……… 53 圖4.30 一般模式(2)指向控制磁偶極矩模擬圖…………… 53 圖4.31 一般模式(2)輸出磁偶極矩模擬圖………………… 54 圖4.32 一般模式(2)所有力矩模擬圖……………………… 54 圖4.33 一般模式(2)環境干擾力矩模擬圖………………… 55 圖4.34 一般模式(2)衛星尤拉角模擬圖…………………… 55 圖4.35 一般模式(3)衛星角速度模擬圖…………………… 56 圖4.36 一般模式(3)動量飛輪轉速模擬圖………………… 56 圖4.37 一般模式(3)動量卸除控制磁偶極矩模擬圖……… 57 圖4.38 一般模式(3)指向控制磁偶極矩模擬圖…………… 57 圖4.39 一般模式(3)輸出磁偶極矩模擬圖………………… 58 圖4.40 一般模式(3)所有力矩模擬圖……………………… 58 圖4.41 一般模式(3)環境干擾力矩模擬圖………………… 59 圖4.42 一般模式(3)衛星尤拉角模擬圖…………………… 59 圖4.43 連續過程衛星角速度模擬圖……………………… 60 圖4.44 連續過程動量飛輪轉速模擬圖………………………60 圖4.45 連續過程動量卸除控制磁偶極矩模擬圖……………61 圖4.46 連續過程指向控制磁偶極矩模擬圖…………………61 圖4.47 連續過程輸出磁偶極矩模擬圖………………………62 圖4.48 連續過程所有力矩模擬圖……………………………62 圖4.49 連續過程環境干擾力矩模擬圖………………………63 圖4.50 連續過程衛星尤拉角模擬圖…………………………63 表2.1 2000~2005年地球磁場模型的高斯係數…………… 13 表3.1 操作模式、硬體、與控制法則………………………22 表4.1 各次系統重量…………………………………………33 表4.2 系統參數………………………………………………35 表A.1 磁力計…………………………………………………69 表A.2 磁力線圈………………………………………………69 表A.3 動量飛輪………………………………………………70 表A.4 陀螺儀…………………………………………………70

    [1] T. Bak, R. Wisniewski and M. Blanke, “Autonomous Attitude Determination and Control System for the Ørsted Satellite,” Proceedings of the IEEE, Vol. 2, pp. 173-186, February 1996.
    [2] C. J. Fong, A. Lin, A. Shie, M. Yeh, W. C. Chiou, M. H. Tsai, P.Y. Ho, C. W. Liu, M. S. Chang, H. P. Pan, S. Tsai and C. Hsiao, “Lessons Learned of NSPO’s Picosatellite Mission: YamSat – 1A, 1B, &1C,” Proc. 16th AIAA/USU Conference on Small Satellites, SSC02-X-6, 2002.
    [3] P. C. Hughes, Spacecraft Attitude Dynamics, John Wiely & Sons, Inc., 1986.
    [4] J. C. Juang and J. J. Miau, “Overview of the PACE Satellite: a Three-Axis Stabilized CubeSat,” 1th International CubeSat Symposium, 2003.
    [5] T. R. Kane, P. W. Likens and D. A. Levinson, Spacecraft Dynamics, McGraw-Hill, 1983.
    [6] M. H. Kaplan, Modern Spacecraft Dynamics & Control, John Wiely & Sons, Inc., 1976.
    [7] P. Landiech, “Extensive Use of Magnetometers and Magnetotorquers for Small Satellites Attitude Estimation and Control,” Advances in the Astronautical Sciences, Guidance and Control, Vol. 88, pp. 137-156, 1995.
    [8] B. S. Leonard, “NPSAT1 Magnetic Attitude Control System,” 16th AIAA Conference on Small Satellites, SSC02-V-7, 2002.
    [9] A. Lin, C. L. Chang, S. Tsai, C. J. Fong, C. P. Chang, R. Lin, C. W. Liu, M. Yeh, M. H. Chung, H. P. Pan and C. H. Hwang, “YamSat: the First Picosatellite Being Developed in Taiwan,” Proc. 15th AIAA/USU Conference on Small Satellites, 13-16, 2001.
    [10] F. Marteau, S. B. Gabriel and E. Rogers, “Attitude Determination and Control For Small Spacecraft,” UKACC International Conference on Control, Vol. 1, No. 427, pp. 620-625, September 1996.
    [11] M. L. Psiaki, F. Martel and P. K. Pal, “Three-Axis Attitude Determination via Kalman Filtering of Magnetometer Data,” Journal of Guidance, Control and Dynamics, Vol. 23, No. 3, pp. 506-514, May-June 1990.
    [12] G. Shorshi and I. Y. Bar-Itzhack, “Satellite Autonomous Navigation and Orbit Determination Using Magnetometers,” Conference on Decision and Control, pp. 542 –548, 1992.
    [13] M. J. Sidi, Spacecraft Dynamics and Control, Cambridge University Press, 1997.
    [14] W. H. Steyn, A Multi-mode Attitude Determination and Control System for Small Satellites, Ph. D. Dissertation, University of Stellenbosch, December 1995.
    [15] W. H. Steyn, Y. Hashida and V. Lappas, “An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite,” 14th AIAA/USU Conference on Small Satellite, SSC00-VIII-8, 2002.
    [16] A. C. Stickler and K. T. Alfriend, “Elementary Magnetic Attitude Control System,” Journal of Spacecraft and Rockets, Vol. 13, No. 5, pp. 282-287, May 1976.
    [17] P. Wang, Y. B. Shtessel and Y. Q. Wang, “Satellite Attitude Control Using Only Magnetorquers,” American Control Conference, pp. 222 –226, June 1998.
    [18] J. R. Wertz, Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, 1978.
    [19] 莊智清, 黃國興, 電子導航, 全華科技圖書股份有限公司, 2001.
    [20] 林詠翔, 微衛星姿態控制次系統設計與模擬, 國立成功大學航空太空工程學系碩士論文, 2000.
    [21] 陳明豐, 低軌道衛星姿態估測演算法, 國立台灣大學電機工程學系碩士論文, 2002.
    [22] http://www.aria.cec.wustl.edu
    [23] http://nssdc.gsfc.nasa.gov
    [24] http://www.iaalab.ncku.edu.tw/pace/
    [25] http://www.iaalab.ncku.edu.tw/picosat/
    [26] http://www.nspo.gov.tw
    [27] http://www.ngdc.noaa.gov/IAGA/wg8/igrf.html

    下載圖示 校內:2004-07-28公開
    校外:2004-07-28公開
    QR CODE