| 研究生: |
陳冠州 Chen, Guan-Jou |
|---|---|
| 論文名稱: |
三段式定位動力螺桿組應用於電動輪椅升降功能之設計與分析 New Design and Analysis of Seat Height Adjustable Wheelchair by Position Power Screw |
| 指導教授: |
蘇芳慶
Su, Fong-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 電動輪椅 、動力螺桿 、坡度偵測 、伺服控制 、重心 、動態系統 |
| 外文關鍵詞: | Power Screw, Mass Centroid, Servo-control, Inclination Detecting, Dynamic System, Powered-wheelchair |
| 相關次數: | 點閱:125 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球高齡比例增加及人類對於健康意識的重視升高,醫療輔助儀器及器材的地位隨即提高。從台灣工業技術研究院在2005年醫療儀器產品以及市場的分析資料來看,其產業成長率高達14%,比全球成長率5~7%還高出許多。而輪椅為其中一項主要生產產品。
過去無論是手動輪椅或電動輪椅,都滿足使用者在二維平面上的移動性,卻無法滿足使用者在垂直方向的動作,過去許多輪椅設計者無不努力設法補足輪椅在垂直方向的動作。有鑑於過去傳統的升降式電動輪椅,皆有著底盤高,及使用者不容易上下或低身撿拾物品之缺陷;且過去繁複的機構設計,很容易造成使用者重心不協調的關係而翻覆或夾傷等危險。
本研究乃設計分析一三段式獨立動力螺桿機構應用於電動輪椅的座椅升降調整及定位。此研究主要分成機構的設計以及系統的模擬。其設計理念不同於以往的升降架構,其結構乃是利用導螺桿本身可以精密定位的特性,將不同尺寸螺桿作結合來精確完成升降之動作及定位,其更具有收合後之乘坐高度較低的優點;另外設計一支撐機構與其搭配來提升整個升降架構的強度以及穩定度。輔以有限元素法來分析整體升降設計結構之強度與安全因數是否達到安全要求。其系統部分分成靜態系統與動態系統。靜態系統在輪椅停止時可依使用者的命令來決定升降高度;而動態系統可由偵測路面坡度的數值來自動調整其高度到安全位置,而此部份利用物理(倒單擺原理)與解剖(重心位置)的觀念來建立起整個系統架構。再將建立起的系統利用Simulink軟體模擬觀察其輸入與輸出之間是否合理與可行加以修正。利用這兩部分的設計來有效解決市面上升降輪椅的缺點。針對三段式動力螺桿定位機構系統的設計與控制,期盼達到更高的實用性、安全性及模組化,更可以獨立於電動輪椅外作更廣泛的產業應用。
Wheelchairs are main products within the market demand of the medical instruments nowadays. In the past years, either manual or powered wheelchairs had been designed to move on level ground. However it still has not been satisfied for the users to move in vertical direction. Consequently, an innovative design for a wheelchair with adjustable seat height will be an inevitable trend to establish a more functional wheelchair.
The drawbacks of modern designs for vertical movements of a powered-wheelchair include an excessive height of the chassis which results in difficult to access and a mal-planning of the mass centroids between the wheelchair and user which usually increases the risks of fall. Otherwise, an improper mechanical design for lifting and lowering the wheelchair may injure the user’s body segments.
This study presents a new mechanism design, Position Power Screw of 3-Stage Type, to achieve a safe seat-height adjustable function. The new design and analysis can overcome the above-described drawbacks, and do an accurate upward or downward motion of seat height. The system was divided into structural design and control simulation. The design rationale is that a power screw which is an element for precision positioning device providing up to different travel ranged will play an important role for the mechanism with variable seat height. Based on the different power screws combined, the mechanism efficiently overcomes the excessive height of the chassis when the seat lowers down to the lowest position. In order to assist the screw structure in supporting the external force and moment from the user or environment, the support mechanism was designed to improve the stability and strength for the whole structure. The whole designed structure was estimated the reliability and feasibility of structural strength in consideration of safe factors by FEM. Intelligent variable height system designed to solve the problem of mass mentroid was separated into static and dynamic system. Static system makes the seat height variable move in vertical direction by the user’s command when the wheelchair is stop. Dynamic system architecture modeled by combining inverted pendulum system and anatomical viewpoint can adjust the seat height automatically and keep the user stable without bending his/her trunk when the wheelchair detects different inclinations of a ramp. The two systems will be simulated via Simulink and estimated the validity and feasibility. And the designed system will not only detect the inclinations of a ramp and then adjust the seat height automatically but also keep the user stable from falling. According to the design and control system of this new mechanism, it can provide an excellent practicability and safety for a powered wheelchair. In the future, it may apply to other industrial applications.
1.內政部多功能輔具資源整合推廣中心,
http://catrp.moi.gov.tw/ToolNews/BasicTool.asp
2.A. B. Wilson, Wheelchairs: A Prescription Guide. New York, NY, Demos, 1992.
3.必翔實業股份有限公司, http://www.pihsiang.com.tw/
4.R. A. Cooper, Wheelchair Selection and Configuration. United States of America, Demos, 1998.
5.Cooper, R. A. and R. Cooper, Trends and Issues in Wheeled Mobility Technologies. Center for Inclusive Design and Environmental Access
6.Independence Technology, A Johnson & Johnson Company, http://www.independencenow.com/home.html
7.Clark, J.A. and R.B. Roemer, Voice controlled wheelchair. Arch Phys Med Rehabil, 58(4): p. 169-75, 1977.
8.Youdin, M., et al., A voice controlled powered wheelchair and environmental control system for the severely disabled. Med Prog Technol, 7(2-3): p. 139-43, 1980.
9.Simpson, R.C. and S.P. Levine, Voice control of a powered wheelchair. IEEE Trans Neural Syst Rehabil Eng, 10(2): p. 122-5, 2002.
10.Levine, S.P., et al., The NavChair Assistive Wheelchair Navigation System. IEEE Trans Rehabil Eng, 7(4): p. 443-51, 1999.
11.Simpson, R.C. and S.P. Levine, Automatic adaptation in the NavChair Assistive Wheelchair Navigation System. IEEE Trans Rehabil Eng, 7(4): p. 452-63, 1999.
12.Fatehi, M.T., M.T. Balmaseda, Jr., and S.H. Koozekanani, Integrated communication/environmental controller system for the physically disabled. Arch Phys Med Rehabil, 68(3): p. 180-4, 1987.
13.Simpson, R., LoPresti, E., Hayashi, S., Nourbakhsh I., and D. Miller, The Smart Wheelchair Component System. Journal of Rehabilitation Research & Development, 41(3):p. 429-42, 2004.
14.Lawn, M., and T. Takeda, Design of a robotic-hybrid wheelchair for operation in barrier present environments. 20th Annual International Conference-IEEE/EMBS, Otc. 29-Nov. 1, Hong Kong, 1998.
15.Benson, J. and S. Barrett, Next generation autonomous wheelchair control. Biomed Sci Instrum, 41: p. 283-8, 2005.
16.Shigley and Mischke, Mechanical Engineering Design, 6th edition
17.J. S. Arora, Introduction to optimum design. US, McGraw-Hill Book Co., 2003.
18.ANSYS9.0 tutorials
19.馬達產品型號, http://www.apexdyna.com/oem/index1.asp
20.廖福奕, 小型馬達技術.全華科技圖書股份有限公司, 台北市, 2003.
21.葉明財, 小型馬達活用技術. 全華科技圖書股份有限公司, 台北市, 1999.
22.陳文耀, 電動機控制工程. 復文書局, 台北市, 2003.
23.Kenjo, T. and 曹昭陽, 電動馬達與控制. 五南股份有限公司, 台北市, 2003.
24.Kuo, B. C. and黃漢邦, 自動控制系統. 東華書局, 台北市, 2001.
25.李宜達, 控制系統設計與模擬. 全華科技圖書股份有限公司, 台北市, 2003.
26.J. C. Stephen, Electric Machinery Fundamentals. 3/E, Mc-Graw-Hill, 1999.
27.J. Tal, Step-By-Step Design of Motion Control Systems. Galil Motion Control, Inc, 1994.