| 研究生: |
李東霖 Li, Tung-Lin |
|---|---|
| 論文名稱: |
低電壓射頻前端接收機電路設計 Design of Low Voltage RF Front-end Receiver Circuits |
| 指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 低雜訊放大器 、主動式巴倫器 、混頻器 、低電壓供給之射頻接收器 |
| 外文關鍵詞: | Low voltage supply receiver, Low Noise Amplifier, Active Balun, Mixer |
| 相關次數: | 點閱:96 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對應用於低電壓供給低功率系統使用之資料讀取接收機射頻前端電路進行之研究與設計。由於現今隨著無線資料傳輸的需求逐漸增加,無線通訊系統無線通訊系統(wireless communication system)的發展及應用日漸成熟、廣泛。
車輛、工廠機器、人類對於諸如行動穿戴裝置、無線感測系統、物聯網以及應用於車輛安全系統的車輛間通訊協定的收發機制等等應用的需求日漸增加,而特定的應用裡如穿戴式產品、生理訊號及環境訊號監測的感測器係藉由太陽能、熱能或無線電波能量等方式供給能量的,其續航力必須長達數天至數年。
故在產品上的挑戰將著眼在高耐久的電源供應,其運算、接收之電路系統上將會強調其低功耗操作,以上述應用產品的續航力,這是目前以及未來發展的一項重要課題。作為此項應用之接收指令或資料更新的接收機必須擁有低功耗低電壓供給之重要特性。
本論文所設計的兩項接收機系統分別為:(1)提出以1.2伏作為供給電壓的接收機設計案,以達到低電壓供給、低功耗效能的目標,並且在頻段設定在應用範圍廣泛的ISM頻帶的2.4 GHz,將接收的2.4 GHz訊號經放大並解調變降頻至中頻段200 MHz。而操作頻段訂定在相對於人體為高頻的2.4 GHz,同時達到接收sensor與電路微小化。(2)提出以0.9伏作為供給電壓的接收機設計案,目的以達到較第一項設計案更低的供給電壓以及更低直流功率耗,並且將操作頻帶設計於1.8 GHz,此操作頻帶為LTE通訊協定中廣為手機電信營運商所採用之頻段。此接收機將1.8 GHz訊號做放大並解調變至中頻帶100 MHz。
本論文提出的射頻前端電路接收機系統主要係以四大子電路所構成,第一項為前端的低雜訊放大器,以高品質低雜訊的方式放大所接收的外部訊號。第二項是將前即所放大的訊號一轉二,提供兩個相位相差180度之巴倫器。三是混頻器,此級的操作是利用前級所接收的訊號與本地振盪源的訊號混頻後取降頻至中頻。考量混頻器若使用單平衡式架構必需使用帶通濾波器以降低LO的feed through訊號對IF訊號的干擾;而本論文提出此系統架構在混頻前將射頻訊號經由主動式巴倫器將單端訊號轉為雙端訊號(而其中主動式巴倫器較被動式巴倫器省面積),故使用能於差動輸出消減LO的feed through 所造成的干擾的雙平衡式之架構,且能較單平衡式混頻器提供射頻訊號多一級增益。第四級為最後一項電路,是作為量測考量用的二轉一量測緩衝器,將降頻的訊號輸出至輸入阻抗為50 Ohm之儀器量測。兩項晶片製程係使用國家晶片中心(CIC)提供的TSMC 0.18-µm 1P6M RF CMOS標準製程進行設計及布局,並利用PCB印刷電路板(Chip on board)方式進行量測。
The aim of this thesis is to design low voltage RF front-end receivers, to achieve a low voltage supply and low power consumption system for wireless communication system.
This thesis includes two receiver system designs at two chip implementations: a 1.2V, 2.4 GHz receiver and a 0.9V, 1.8GHz receiver, respectively. Both direct conversion receivers include four function blocks: The first function block of the receiver is a low noise amplifier (LNA) amplifying the signal with high quality and low noise.
The second function block of the receiver, balance to unbalance (Balun) converter, converts signal form single ended to differential output in same conversion gain.
The third function block of the receiver is mixer, this function block translates input RF frequency signal to output IF frequency signal by multiplying RF frequency signal with local oscillator (LO) signal, and the process is called down-conversion. At least, this thesis adopts measurement buffer in the fourth function block of the receiver, this stage’s function transfers differential baseband output into single signal for the 50 Ohm input impedance measurement instrument to measure. In addition, all designs mentioned above are all fabricated by TSMC 0.18-μm RF CMOS process.
According to the measurement results, the sensitivity of 1.2 V, 2.4 GHz receiver can be detected by input signal power level is -50 dBm. And also the 0.9 V, 1.8 GHz front end receiver circuit, input signal level in -40 dBm is still detectable.
[1] B. Razavi, RF Microelectronics, 2nd edition, Prentice Hall, 2012.
[2] A. Amer, E. Hegazi and H. F. Ragaie, “A 90-nm Wideband Merged CMOS LNA and Mixer Exploiting Noise Cancellation,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 323-328, Feb. 2007.
[3] J.G. Sun, Lu Huang, H.H. Liu, D.P. Chen and H. F. Ragaie, “A 180-nm Mixer Merged with LNA Exploiting Noise Cancellation,” IEEE International Symposium on RF Integration Technology, vol. 42, no. 30, pp. 25-28, Dec. 2011.
[4] A. Balankutty and P. R. Kinget, “An Ultra-Low Voltage, Low-Noise, High Linearity 900-MHz Receiver With Digitally Calibrated In-Band Feed-Forward Interferer Cancellation in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2268-2283, Oct. 2011.
[5] A. Balankutty, S-A Y, Y-P Feng and P. R. Kinget, “A 0.6-V Zero-IF/Low-IF Receiver With Integrated Fractional- N Synthesizer for 2.4-GHz ISM-Band Applications,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 538-553, March. 2010.
[6] M. Camus, B. Butaye, L. Garcia, M. Sie, B. Pellat and T. Parra, “A 5.4mW 0.07mm2 2.4GHz Front-end Receiver in 90nm CMOS for IEEE 802.15.4 WPAN, ” IEEE Solid-State Circuits Conference, ISSCC 2008.Dig. of Technical Papers, San Francisco, CA, Feb. 2008, p.p. 368-620.
[7] F. Zhang, Y. Miyahara and B. P. Otis, “Design of a 300-mV 2.4-GHz Receiver Using Transformer-Coupled Techniques,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3190-3205, Dec. 2013.
[8] A. Balankutty, S-A Y, Y-P Feng and P. R. Kinget, “A 2.4-GHz MEMS-Based PLL-Free Multi-Channel Receiver With Channel Filtering at RF,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1689-1700, July. 2013.
[9] R. Su, S. Lanzisera and K. S. J. Pister, “A 915MHz integrated FSK receiver front-end and a CMOS ring oscillator PLL built with standard cells, ” VLSI Design, Automatic and Test(VLSI-DAT), 2011 international Symposium on, Hsinchu, April. 2011, pp. 1-4.
[10] F. Zhang, Y. Miyahara and B. P. Otis, “Design of a 300-mV 2.4-GHz Receiver Using Transformer-Coupled Techniques,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3190-3205, Dec. 2013.
[11] S. Sayilir, W.-F. Loke, J. Lee, H. Diamond, B. Epstein, D. L. Rhodes and J. Byunghoo, “A –90 dBm Sensitivity Wireless Transceiver Using VCO-PA-LNA-Switch-Modulator Co-Design for Low Power Insect-Based Wireless Sensor Networks,” IEEE J. Solid-State Circuits, vol. 49, no. 4, pp. 996-1006, April. 2014.
[12] A. A. Abidi, “High-Frequency Noise Measurements on FETs with Small Dimensions,” IEEE Trans. Electron Devices, vol. 33, pp.1801-1805, Nov.1986.
[13] B. Razzavi, “Impact of Distributed Gate Resistance on the Performance of MOS Devices,” IEEE Trans. Circuit and Systems- Part I, wol.41, pp.419-422, July 1944.
[14] R. Su, S. Lanzisera and K. S. J. Pister, “A 915MHz integrated FSK receiver front-end and a CMOS ring oscillator PLL built with standard cells, ” VLSI Design, Automatic and Test(VLSI-DAT), 2011 international Symposium on, Hsinchu, April. 2011, pp. 1-4.
[15] A. Balankutty, S-A Y, Y-P Feng and P. R. Kinget, “A 2.4-GHz MEMS-Based PLL-Free Multi-Channel Receiver With Channel Filtering at RF,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1689-1700, July. 2013.
[16] JJ. Craninckx, M. Liu, D. Hauspie, V. Giannini, T. Kim, J. Lee, M. Libois, D. Debaillie, C. Soens, M. lngels, A. Baschirotto, J. Van Driessche, L. Van der Perre, and P. Vanbekbergen, “A fully reconfigurable software-defined radio transceiver in 0.13 um CMOS,”in Proc. IEEE ISSCC, Feb. 11–15, 2007, pp. 346–607.
[17] T. Y. Choi, and B. Jung, “A 2.4-GHz Resistive Feedback LNA in 0.13-um CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3019-3029, Nov. 2009.
[18] M. A. Do, W.M. Lim, J. G. Ma, and K. S. Yeo, “Design of A Phase Splitter for 3rd ISM bands,” IEEE Electron Devices and Solid-State Circuits, 2003 IEEE Conference on , Dec.2003, p.p. 234-240.
[19] Mohsen Moezzi and M. Sharif Bakhtiar, “Wideband LNA Using Active Inductor With Multiple Feed-Forward Noise Reduction Paths,” IEEE Transations on Microwave Theory and Techniques, vol.60, no. 4, April 2012.
[20] B.-J. Huang, B.-J. Huang, K.-Y. Lin, and H. Wang, “A 2-40GHz Active Balun using 0.13um CMOS Process,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 3, pp. 164-466, Mar. 2009.
[21] T.-T. Hsu and C.-N. Kuo, “Low Power 8-GHz Ultra-Wideband Active Balun,” IEEE Silicon Monolithic Integrated Circuits in RF Systems, 2006. Dig. of Papers,Topical Meeting on, San Diego, CA, Jan. 2006.
[22] H.-H. Chiang, F.-C. Huang, and C.-K. Wang, “A 90nm CMOS V-Band Low-Noise Active Balun with Broadband Phase-Correction Technique,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2583-2591, Nov. 2011.
[23] D. Mastanuono and D. Manstretta, “A Low-Noise Active Balun with IM2 Cancellation for Multiband Protable DVB-H Receivers,” in IEEE Solid-State Circuits Conference, ISSCC 2009. Dig. of Technical Papers, San Francisco, CA, Feb. 2009, pp. 216 – 217.
[24] H. Darabi and J. Chiu, “A Noise Cancellation Technique in Active RF-CMOS Mixers,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2628-2632, Dec. 2005.
[25] J. Yoon, H. Kim, C. Park, J. Yang, H. Song, and S. Lee, K. Bumman, “A New RF CMOS Gilbert Mixer with Improved Noise Figure and Linearity,” IEEE Trans. Microw. Theory Tech, vol. 56,no. 3, p.p. 626-631, March. 2008.
[26] H. Darabi and A. A. Abidi, “Noise In RF-CMOS Mixers: A Simple Physical Model,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 13-25, Jan. 2000.
[27] W.-T. Li, H.-Y. Yang, Y.-C. Chiang, J.-H. Tsai, M.-H. Wu, and T.-W. Huang, “A 453-uW 53-70GHz Ultra-Low-Power Double-Balanced Source-Driven Mixer Using 90-nm CMOS Technology,” IEEE Trans. Microw. Theory Tech, vol. 61,no. 5, p.p. 1903-1912, May. 2013.
[28] T.-P. Wang, C.-C. Chang, R.-C. Liu, M.-D. Tsai, K.-J. Sun, Y.-T. Chang, L.-H. Lu, and H.-W. Huei, “A Low-Power Oscillator Mixer in 0.18-um CMOS Technology,” IEEE Trans. Microw. Theory Tech, vol. 54,no. 1, p.p. 88-95, Jan. 2006
[29] M. K. Hati, T. K. Bhattachartta “A Power Efficient and Constant-gm 1.8V CMOS Operational Transconductance Amplifier with Rail-to-rail Input and Output Ranges for Charge Pump in Phase-locked Loop,” IEEE Devices, Circuits and Systems, 2012 International Conference on, Coimbatore, March. 2012, p.p. 38-43.
[30] M. G. Kim, H. W. An, Y.M. Kang, J. Y. Lee, T. Y. Yun, “A Low-voltage, Low-power, and Low-noise UWB Mixer Using Bulk-injection and Switched Biasing Techniques,” IEEE Trans. Microw. Theory Tech, vol. 60, no. 8, p.p. 2486-2493, June. 2012.
[31] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, 1998.
[32] C. G. Shen, Z. Q. Li “A Low Power 0.3-3.8 GHz Low-Noise Mixer With Noise Cancellation,” IEEE Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), p.p 1-4, June 2012.
[33] Fang Zhu, Wei Hong, Ke Wu, Ji-Xin Chen, Xin Jiang, Pin-Pin Yan, Chun-Lin Han “A Broadband Low-Power Millimeter-Wave CMOS Downconversion Mixer With Improved Linearity,” IEEE Transactions on Circuit and System, vol. 61, no. 3, p.p. 138-142, March. 2014.
[34] S.S.K. Ho; C.E. Saavedra, “A Low-Noise Self-Oscillating Mixer Using a Balanced VCO Load,” IEEE Transactions on Circuit and System, vol. 58, no. 8, p.p. 1705-1712, August. 2014.