簡易檢索 / 詳目顯示

研究生: 黃義傑
Huang, Yi-Jie
論文名稱: 選擇性感應結構於非接觸式手機充電平台之研究
Study on Contactless Charging Platform with Selective Induction Structure
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 113
中文關鍵詞: 非接觸式充電平台選擇性感應結構
外文關鍵詞: contactless, selective induction structure, charging platform
相關次數: 點閱:79下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究非接觸式感應電能傳輸技術,並將其應用於具選擇性感應結構之非接觸式手機充電平台,藉以提高系統傳輸功率與電能轉換效率。所提選擇性感應結構,係利用感測線圈偵測其次級側感應結構於充電平台上之擺放位置,並依據偵測結果開啟充電平台內對應之鐵芯。此外,利用單晶片控制電路實現充電平台之過電流保護,並調節系統於待機時所消耗之功率。次級側感應結構則為一平面感應線圈配合平面型鐵芯建構而成,其整體厚度為2.5mm。最後藉由實測驗證非接觸式感應耦合結構,其於2mm氣隙下之最高電能轉換效率達70%。

    This thesis investigates the contactless power transmission system for selective induction structure of charging platform, so as to improve the transfer efficiency. In the system, detects position of the secondary side induction structure on the charging platform and according to detection result excites the cores in charging platform. The system uses microchip control circuit to provide over load protection and regulate the power when the system is idle. The secondary induction structure is established by planar induction coil and planar core that the thickness is 2.5mm. Experimental results show that the power transmission efficiency of contactless inductive structure is 70% under 2mm gap.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1-1 研究背景與目的 1 1-2 非接觸式感應電能傳輸技術之應用範疇 3 1-3 研究方法 7 1-4 論文大綱 8 第二章 感應結構之基本特性與原理分析 9 2-1 前言 9 2-2 感應結構之特性分析 9 2-2-1 磁性材料 9 2-2-2 感應結構之耦合特性分析 11 2-3 感應線圈之動作原理 18 2-4 感應結構之非理想效應 21 2-4-1 集膚效應 22 2-4-2 鄰近效應 24 2-5 變壓器等效模型之分析 27 2-6 變壓器耦合係數之求法 29 第三章 非接觸式感應充電系統之分析 30 3-1 前言 30 3-2 非接觸式電能傳輸之方法 30 3-3 非接觸式感應電能傳輸系統之分析 31 3-4 非接觸式感應充電系統架構之規劃 33 3-5 感應耦合結構 34 3-6 驅動電路 38 3-7 諧振電路 40 3-7-1 諧振電路之分析 40 3-7-2 初級側諧振電路之分析 42 3-7-3 次級側諧振電路之分析 43 3-7-4 次級側反射阻抗之分析 46 第四章 硬體電路設計與製作 51 4-1 前言 51 4-2 系統電路架構 51 4-3 感應耦合結構之設計製作 52 4-3-1 初級側充電平台之設計製作 53 4-3-2 次級側平面感應結構之設計製作 55 4-4 充電平台之驅動電路 56 4-4-1 Class D諧振電路 56 4-4-2 半橋驅動電路 61 4-5 單晶片控制電路 62 4-5-1 單晶片控制電路簡介 62 4-5-2 感測電壓整流濾波電路 66 4-5-3 充電平台之選擇性激發開關 68 4-5-4 初級側諧振電容及操作頻率切換 74 4-5-5 多負載之切換控制 78 4-5-6 充電平台之保護機制 80 4-6 諧振電容之設計 81 4-7 次級側電路之設計 83 4-7-1 電壓調節電路 83 4-7-2 充電電路 85 4-8 非接觸式感應充電系統之設計流程 89 第五章 系統模擬與實驗結果 92 5-1 前言 92 5-2 硬體電路製作 92 5-3 IsSpice模擬 94 5-4 實驗結果量測 95 第六章 結論與未來研究方向 104 6-1 結論 104 6-2 未來研究方向 105 參考文獻 106 自傳 113

    [1] C. S. Wang, O. H. Stielau, and G. A. Covic, “Load models and their application in the design of loosely coupled inductive power transfer system,” in Proc. PowerCon, 2000, pp. 1053-1058.
    [2] O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer system,” in Proc. PowerCon, 2000, pp. 85-90.
    [3] C. S. Wang, G. A. Covic, and O. H. Stielau, “General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,” in Proc. IEEE IECON, 2001, pp. 1049-1054.
    [4] 秦海鴻、王慧貞、嚴仰光,非接觸式鬆耦合感應電能傳輸系統原理分析與設計,第十五屆全國電源技術年會,2003。
    [5] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, 2005.
    [6] 毛賽君,非接觸感應電能傳輸系統關鍵技術研究,南京航空航天大學碩士論文,2006。
    [7] K. W. Klontz, D. M. Divan, and D. W. Novothy, “An actively cooled 120-kW coaxial winding transformer for fast charging electric vehicles,” IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 1257-1263, 1995.
    [8] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. IEEE PEDS, 1995, pp. 797-801.
    [9] J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Optimising sliding transformers for contactless power transmission systems,” in Proc. IEEE PESC, 1995, pp. 245-251.
    [10] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5036, 1996.
    [11] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. PowerCon, 2000, pp. 79-84.
    [12] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, 2006.
    [13] 杜明育,非接觸式線性感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2007。
    [14] K. W. Klontz, D. M. Divan, D. W. Novothy, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, 1995.
    [15] B. J. Heeres, D. W. Novotny, D. M. Divan, and R. D. Lorenz, “Contactless underwater power delivery,” in Proc. IEEE PESC, 1994, pp. 418-423.
    [16] T. Kojiya, F. Sato, H. Matsuki, and T. Sato, “Automatic power supply system to underwater vehicles utilizing non-contacting technology,” in Proc. IEEE Techno-Ocean, 2004, pp. 2341-2345.
    [17] W. Lim, J. Nho, B. Choi, and T. Ahn, “Low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” in Proc. IEEE PESC, 2002, pp. 579-584.
    [18] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
    [19] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, 2004.
    [20] X. Liu, P. W. Chan, and S. Y. Hui, “Finite element simulation of a universal contactless battery charging platform,” in Proc. IEEE APEC, 2005, pp. 1927-1932.
    [21] S. Y. Hui and W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
    [22] X. Liu and S. Y. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, 2007.
    [23] X. Liu and S. Y. Hui, “Simulation study and experimental verification of a universal contactless Battery charging platform with localized charging features,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2202-2210, 2007.
    [24] 張宗文,陣列鐵芯感應結構應用於非接觸式手機充電平台之研究,國立成功大學電機工程學系碩士論文,2007。
    [25] 萬泰麟,非接觸式感應充電技術應用於小家電裝置之研究,國立成功大學電機工程學系碩士論文,2007。
    [26] J. Achterberg, E. A. Lomonova, and J. de Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, 2008.
    [27] X. Liu and S. Y. Hui, “Optimal design of a hybrid winding structure for planar contactless battery charging platform,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 455-463, 2008.
    [28] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, 1992.
    [29] M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, 2001.
    [30] K. W. Klontz, A. Esser, P. J. Wolfs, and D. M. Divan, “Converter selection for electric vehicle charger systems with a high-frequency high-power link,” in Proc. IEEE PESC, 1993, pp. 855-861.
    [31] A. Esser, “Contactless charging and communication for electric vehicles,” IEEE Trans. Ind. Appl., vol. 1, no. 6, pp. 4-11, 1995.
    [32] F. Sato, J. Murakami, T. Suzuki, H. Matsuki, S. Kikuchi, K. Harakawa, H. Osada, and K. Seki, “Contactless energy transmission to mobile loads by CLPS-test driving of an EV with starter batteries,” IEEE Trans. Magn., vol. 33, no. 5, pp. 4203-4205, 1997.
    [33] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. APEC, 1997, pp. 841-847.
    [34] C. Cai, D. Du, and Z. Liu, “Advanced traction rechargeable battery system for cableless mobile robot,” in Proc. IEEE AIM, 2003, pp. 234-239.
    [35] R. Lee, L. Wilson, and C. E.Carter, ELECTRONIC TRANSFORMERS AND CIRCUITS. 3rd ed., New York: Wiley, 1988.
    [36] K. D. T. Ngo and R. S. Lai, “Effect of height on power density in spiral-wound power-pot-core transformers,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 601-606, 1992.
    [37] K. D. T. Ngo, R. P. Alley, A. J. Yerman, R. J. Charles, and M. H. Kuo, “Design issues for the transformer in a low-voltage power supply with high efficiency and high power density,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 592-600, 1992.
    [38] T. O. Howard and K. H. Carpenter, “A numerical study of the coupling coefficients for pot core transformers,” IEEE Trans. Magn., vol. 31, no. 3, pp. 2249-2253, 1995.
    [39] T. sato, K. sato, K. Yamasawa, F. Zhang, and K. Yanagisawa, “Spiral-type transmission line with an Mn-Zn ferrite core,” IEEE Trans. Magn., vol. 39, no. 5, pp. 3205-3207, 2003.
    [40] K. Yamasawa, K. Maruyama, I. Hirohama, and P. P. Biringer, “High-frequency operation of a planar-type microtransformer and its application to multilayered switching regulators,” IEEE Trans. Magn., vol. 26, no. 3, pp. 1204-1209, 1990.
    [41] S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Coreless printed circuit board (PCB) transformers with multiple secondary Windings for complementary gate drive circuits,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 431-437, 1999.
    [42] S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Characterization of coreless printed circuit board (PCB) transformers,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1275-1282, 2000.
    [43] D. K. Cheng, Field and Wave Electromagnetics. 2nd ed., U.S.A.: Addison-Wesley, 1989.
    [44] K. Finkenzeller, RFID HANDBOOK. 2nd ed., England: Wiley, 2003.
    [45] 袁杰,無線電高頻電路,台北市,全華科技,2001。
    [46] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics. 2nd ed., U.S.A.: Wiley, 2003.
    [47] N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” in Proc. IEEE PESC, 2003, pp. 853-860.
    [48] A. W. Lotfi, P. M. Gradzki, and F. C. Lee, “Proximity effects in coils for high frequency power applications,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2169-2171, 1992.
    [49] 王志強,開關電源設計,第二版,電子工業出版社,2005。
    [50] 梁適安,交換式電源供給器之理論與實務設計,台北市,全華科技,1994。
    [51] Y. Wu, L. Yan, and S. Xu, “A new contactless power delivery system,” in Proc. ICEMS, 2003, pp. 253-256.
    [52] IR2111 Data Sheet, International Rectifier Inc., 2003.
    [53] PIC16F87X Data Sheet, Microchip Technology Inc., 2001.
    [54] TPS5420 Data Sheet, Texas Instruments Inc, 2006.
    [55] BQ2057 Data Sheet, Texas Instruments Inc, 2002.

    下載圖示 校內:2009-07-29公開
    校外:2010-07-29公開
    QR CODE