| 研究生: |
周瑋潔 Chou, Wei-Chieh |
|---|---|
| 論文名稱: |
自走機器人用非接觸式分段激發感應供電軌道之研究 Study on Segment Excited Track of Contactless Inductive Power Supply System for Guided Robot |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 非接觸式電能傳輸 、分段激發軌道 、資料傳輸 、自走機器人 |
| 外文關鍵詞: | contactless power transmission, segment excited track, guided robot |
| 相關次數: | 點閱:86 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究非接觸式電能傳輸感應供電軌道,並將其應用於自走型機器人之供電系統,俾使移動性機具之活動範圍得不受電線連接限制。文中首先針對線性移動裝置之耦合結構作模擬與分析,選用適當的鐵芯研製一條可鋪設於地面之長144公分供電軌道,並選擇合適的諧振電路以提高電力傳輸能力。為有效地使用感應軌道,將其分為八段,結合單晶片控制電路實現分段激發載有機器人之軌道,同時控制頻率切換電路降低系統待機時之功率損耗。此外,系統加入資料傳輸功能,使自走機器人在自動沿著所設定之路徑行走時,亦可回傳機具信息至初級側。最後經模擬與實驗量測,系統已呈現出自走機器人用分段激發感應供電軌道之雛形。
This thesis investigates the track of contactless inductive power transmission for guided robot so there is no limit because of wire to robot’s moving area. At first the coupling structure of linear moving type are simulated and analyzed, then choose the adequate cores to implements a length of 144 centimeter power supply track which can lie on the ground, and adopts suitable resonant circuit to improve power transfer ability. The primary track is divided into eight components in order to employ track effectively. System utilizes microcontroller to excited part of track that robot is located as well as controls the frequency switching circuit to reduce power loss when system is idle. In addition, while guided robot along the track keep moving, that also can transfer data to primary. Finally, simulation and experimental results are provided to validate the correctness of the proposed system.
[1] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, 1995.
[2] T. Kojiya, F. Sato, H. Matsuki, and T. Sato, “Automatic power supply system to underwater vehicles utilizing non-contacting technology,” in Proc. IEEE OCEANS, 2004, vol. 4, pp. 2341-2345.
[3] B. J. Heeres, D. W. Novotny, D. M. Divan, and R. D. Lorenz, “Contactless underwater power delivery,” in Proc. IEEE PESC, 1994, pp. 418-423.
[4] J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Optimising sliding transformers for contactless power transmission systems,” in Proc. IEEE PESC, 1995, pp. 245-251.
[5] J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Sliding transformers for linear contactless power delivery,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 774-779, 1997.
[6] J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Linear contactless power transmission systems for harsh environments,” in Proc. IEEE AFRICON, 1996, vol. 2, pp. 711-714.
[7] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, 2006.
[8] J. Jia, W. Liu, and H. Wang, “Contactless power delivery system for the underground flat transit of mining,” in Proc. ICEMS, 2003, vol. 1, pp. 282-284.
[9] K. Finkenzeller, RFID HANDBOOK. 2nd ed., Wiley, 2003.
[10] Y. H. Liu, S. C. Wang, and R. C. Leou, “A novel primary-side controlled contactless battery charger,” in Proc. IEEE PEDS, 2007, pp. 320-324.
[11] M. Ryu, Y. Park, J. Baek, and H. Cha, “Analysis of the contactless power transfer system using modeling and analysis of the contactless transformer,” in Proc. IEEE IECON, 2005, pp. 1036-1042.
[12] Y. Wu, L. Yan, and S. Xu, “Modeling and performance analysis of the new contactless power supply system,” in Proc. ICEMS, 2005, vol. 3, pp. 1983-1987.
[13] C. S. Wang, G. A. Covic, and O. H. Stielau, “General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,” in Proc. IEEE IECON, 2001, vol. 2, pp. 1049-1054.
[14] M. Ryu, Y, Park, J. Baek, and H. Cha, “Comparison and analysis of the contactless power transfer systems using the parameters of the contactless transformer,” in Proc. PESC, 2006, pp. 1-6.
[15] 萬泰麟,非接觸式感應充電技術應用於小家電裝置之研究,國立成功大學電機工程學系碩士論文,2007。
[16] 杜明育,非接觸式線性感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2007。
[17] E. S. Kim, H. K. Lee, Y. S. Kong, and Y. H. Kim, “Operating characteristics in LCLC resonant converter with a low coupling transformer,” in Proc. APEC, 2007, pp. 1651-1656.
[18] W. Zhou and H. Ma, “Design Considerations of compensation topologies in ICPT system,” in Proc. APEC, 2007, pp. 985-990.
[19] Y. S. Kong, E. S. Kim, I. G. Hwang, and H. K. Lee, “High-efficiency series-parallel resonant converter for the non-contact power supply,” in Proc. APEC, 2005, vol. 3, pp. 1469-1501.
[20] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5036, 1996.
[21] R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. Buchheit, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IECON, 1997, vol. 3, pp. 792-797.
[22] F. Zhou, M. H. Cui, T. Liu, T. Han, and Z. A. Wang, “Efficiency and frequency bifurcating phenomenon research of series resonance converter applied in a contact-less power transmission system,” in Proc. IEEE PESC, 2006, pp. 1-6.
[23] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 148-157, 2004.
[24] H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air gap coupler for inductive charger,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, 1999.
[25] 李義隆,非接觸式電力傳輸系統之研究,國立彰化師範大學電機工程學系博士論文,2007。
[26] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. ICPST, 2000, vol. 1, pp. 79-84.
[27] S. C. Rho, S. H. Kim, Y. H. Ahn, and Baik Kim, “A study on power transmission system using resonant frequency tracking method and contactless transformer with multiple primary winding,” in Proc. IEEE ICEMS, 2007, pp. 1635-1639.
[28] J. Zgraja, “Computer simulation of induction hardening of moving flat charge,” IEEE Trans. Magn., vol. 39, no. 3, pp. 1523-1526, 2003.
[29] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. IEEE PEDS, 1995, vol. 2, pp. 797-801.
[30] J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Optimized linear contactless power transmission systems for different applications,” in Proc. IEEE APEC, 1997, vol. 2, pp. 953-959.
[31] J. T. Boys, G. A. Covic, and A. W. Green, “Stability and control of inductively coupled power transfer systems,” in Proc. IEE EPA, 2000, vol. 147, no. 1, pp. 37-43.
[32] K. H. Han, B. S. Lee, and S. H. Back, “Modeling of the contactless power collector for PRT (personal rapid transit) system,” in Proc. ICEMS, 2005, no. 1, pp. 798-801.
[33] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314.
[34] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for Maglev applications,” in Proc. IEEE IAS, 2002, vol. 3, pp. 1586-1591.
[35] HIP4082 Data Sheet, Intersil Americas Inc., 2003.
[36] PIC16F87X Data Sheet, Microchip Technology Inc., 2003.
[37] TPS5420D Data Sheet, Texas Instruments Inc., 2006.
[38] UGN3503U Data Sheet, Allegro MicroSystems Inc., 2002.
[39] LM35 Data Sheet, National Semiconductor Inc., 1994.
[40] MC145026P Data Sheet, Motorola Inc., 1998.