| 研究生: |
吳文獻 Wu, Wen-Hsien |
|---|---|
| 論文名稱: |
奈米球微影術於奈米製程技術之應用與發展 Development of nanofabrication technique using Nanosphere Lithography |
| 指導教授: |
張允崇
Chang, Yun-Chorng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 局部表面電漿 、奈米球微影術 |
| 外文關鍵詞: | nanosphere lithography, localized surface plasmon |
| 相關次數: | 點閱:78 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究近來熱門的奈米結構製造技術:奈米球微影術(Nanosphere lithography; NSL),奈米球微影術是利用奈米球排列出二維平面的球陣列當作一種遮罩,利用此遮罩可以製作出奈米結構。實驗上分成兩個部份:(1)球陣列製作,以SiO2微米球為主要材料,在陣列製作上採取Drop Method 和Capping Method兩種方式,並且探討讓SiO2微米球在玻璃基板上能夠有單層且有序排列的方式與條件。(2)奈米球微影術應用於奈米金屬粒子結構的製作及光學特性研究。
在製作球陣列方面,實驗發現Drop Method並不能夠完全達成平面上皆是單層球排列的分佈,而Capping Method能有機會達成大面積單層球排列,同時實驗發現溶液粒子密度對於球陣列的形成有某種程度的影響,在平行板的結構上,當溶液粒子密度與結構需求的粒子密度的比值小於0.4時,則平面上並不容易產生陣列的排列,而比值大於1時,球陣列除了單層球的排列外,多層球堆疊的現象也越來越明顯。除了溶液粒子密度的實驗測試外,實驗也嘗試改變微米球水溶液的溶劑,加入甲醇觀察是否能改善球的排列性,在本文中也嘗試在基板上事先做好圖案,利用Capping Method的方式使得球能夠排成所需要的圖案。
奈米結構的製作上,利用SiO2微米球陣列當作奈米球微影術的遮罩,鍍上金、銀和鋁薄膜,再將球移除後,即得具有奈米金屬粒子結構的金屬薄膜,並進一步量測此金屬薄膜在光學穿透率量測上的特性表現,觀察是否有局部表面電漿共振(Localized Surface Plasmon Resonance)效應的存在。實驗發現,不管是何種金屬粒子,當金屬粒子的尺寸越大時,共振波長將會有紅位移(Red Shift)的現象產生。同時,當金屬粒子鍍上二氧化矽薄膜時,由於環境介電常數的改變,造成吸收光譜上的共振波長也有紅位移的現象產生。一連串的實驗結果顯示,利用奈米球微影術製作的奈米金屬粒子確實有局部表面電漿共振效應的現象。
Recently, Nanosphere lithography (NSL) has attracted a lot of interests because it is potentially a low-cost nanofabrication technique Nanostructure fabrications using NSL have been realized by various researchers. In this dissertation, nanofabrication using NSL has been studied and successfully demonstrated. The content of this dissertation is divided into two parts. First, two experimental methods (Drop Method and Capping Method) that lead to the formation of the NSL shadow mask are studied. This shadow mask is composed of a single layer of closed-packed two-dimensional array of nanometer-scaled silica spheres. The experimental conditions for both methods are optimized in order to fabricate a NSL shadow mask that covers a large area. It is observed that the Drop Method usually results in smaller mask area and is not suitable for further nanofabrication. In the other hands, the Capping Method can produce mask with large area and is further studied. The effects of the particle density and the type of solution using the Capping method are investigated. Both are important factors for NSL mask fabrication. Furthermore, a template-assisted NSL mask is also successfully demonstrated.
In the second part of this dissertation, the NSL shadow mask is used as the shadow mask for metal depositions. Three types of metals (gold, silver, and aluminum) are selected for due to their visible-near IR localized surface plasmon resonance (LSPR) wavelength. Arrays of metal nano-clusters on top of the substrates are successfully fabricated and can be observed by optical microscope. Absorptions peaks from localized surface plasmon resonance from the metal clusters can be observed in the absorption measurements. The resonance wavelength is found to red-shift when the size of the metal clusters increases. In addition, it is also found that the resonance wavelength is very sensitive to the surrounding of the metal clusters. The resonance wavelength red-shifts when the metal clusters are covered by a thin-film of Silicon oxide.
In conclusion, nanofabrication using Nanosphere lithography is successfully demonstrated. It provides a simple and low-cost way to fabricate nanostructures on a flat surface and has huge potential for industrial and research applications.
[1]柯賢文; 表面與薄膜處理技術,全華科技圖書股份有限公司
[2]Guozhong Cao; Nanostructures & Nanomaterials
[3]施敏; Semiconductor Devices Physics and Technology
(2nd Edition)
[4] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov,
H.Yoshimura and K. Nagayama; Langmuir 1992, 8, 3183-3190
[5] R. Micheletto," H. Fukuda, and M. Ohtsu; Langmuir 1995,
11, 3333-3336
[6]Takashi YAMASAKI,and Tetsuo TSUTSUI; Jpn. J. Appl. Phys.
Vol.38(1999)pp. 5916-5921 Part 1, No. 10,October 1999
[7] Yadong Yin, Yu Lu, Byron Gates, and Younan Xia; J. Am. Chem.
Soc. 2001, 123, 8718-8729
[8] Yadong Yin, Yu Lu, and Younan Xia; J. Am. Chem. Soc. 2001,
123, 771-772
[9] Sachiko Matsushita, Tetsuya Miwa, and Akira
Fujishima ;Langmuir 1997, 13, 2582-2584
[10] Antony S. Dimitrov and Kuniaki Nagayama; Langmuir 1996,
12, 1303-1311
[11] J. Rybczynski, U. Ebels; Colloids and Surfaces A:
Physicochem. Eng. Aspects 219 (2003) 1-6
[12] Younan Xia and Naomi J. Halas, Guest; Shape-Controlled
Synthesis and Surface Plasmonic Properties of Metallic
Nanostructures; MRS BULLETIN VOLUME 30 MAY 2005
[13] Amanda J. Haes, Christy L.Haynes, Adam D.McFarland, George C. Schatz,Richard P.Van Duyne, and Shengli Zou; Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy; MRS BULLETIN VOLUME 30 MAY 2005
[14] John R. Vig; J. Vac. Sci. Technol. A, Vol.3, No.3, 1985
[15] Christy L. Haynes and Richard P. Van Duyne; J. Phys. Chem.
B 2001, 105, 5599-5611
[16] Weber, Marvin J. 1932-; Handbook of Optical Materials
(2003)