簡易檢索 / 詳目顯示

研究生: 卓晉宇
Cho, Chin-Yu
論文名稱: K-band變壓器回授壓控振盪器及2.2 GHz非整數型鎖相迴路之設計
Design of K-band Transformer Feedback Voltage-controlled Oscillator and 2.2 GHz Fractional-N Phase-locked Loop
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 82
中文關鍵詞: 變壓器壓控振盪器非整數型鎖相迴路
外文關鍵詞: Transformer, Voltage-controlled Oscillator (VCO) , Fractional-N PLL
相關次數: 點閱:106下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計為應用於2.4-/24-GHz雙頻帶共存接收機之子電路設計,其中可分為兩個部分:第一部分為K-band變壓器回授壓控振盪器;第二部分為2.2 GHz ISM-band 非整數型鎖相迴路。在本論文中設計之兩個子電路皆使用TSMC 0.18 µm CMOS製程實現。
    在K-band變壓器回授壓控振盪器設計中,變壓器之主線圈利用單線圈與較大線寬降低寄生電阻以提升品質因子。變壓器主線圈接至電晶體的汲極與電容形成共振腔,次線圈接至電晶體源極。由於汲極與源極為同相位關係,透過變壓器增加輸出擺幅,達到高輸出功率與低相位雜訊。在本次設計電路之量測結果,頻率可調範圍為21.53~2.2 GHz;量測相位雜訊在21.6 GHz偏移1 MHz處為-102.08 dBc/Hz,偏移10 MHz處為-126.83 dBc/Hz;輸出功率皆大於-6.01 dBm,功率消耗為11.74 mW。包含緩衝放大器之整體晶片面積為0.665 mm2。
    在2.2 GHz非整數型鎖相迴路中,子電路包含相位頻率偵測器(PFD)、充電泵(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、多模數除頻器(MMD)及三角積分調變器。藉由數位輸出控制多模數除頻器,在一段時間內變化除頻器除數,達到平均除小數之概念,改善頻寬與頻道間距的取捨關係。因三角積分調變器將除數隨機化的關係,降低其小數突波之大小。在本次設計電路之量測中,參考訊號頻率設定為20 MHz,量測其輸出訊號頻率為2.18 GHz至2.45 GHz;相位雜訊在2.213 GHz偏移10 MHz處為-125 dBc/Hz;輸出功率皆大於-7.26 dBm,功率消耗為18.9 mW。包含緩衝放大器之整體晶片面積為1.13 mm2。

    The thesis proposes the subcircuit designs of 2.4-/24-GHz coexistence RF receiver Front-end circuits. There are two parts. The first part is about the design of the K-band transformer feedback voltage-controlled oscillator. A 2.2 GHz fractional-N phase-locked loop is designed in the second part. All the above-mentioned designs are fabricated in TSMC 0.18 µm CMOS process.
    In the design of the K-band transformer feedback voltage-controlled oscillator, asymmetric-width transformer is applied to improve the quality factor of LC tank. Since the waveforms of the drain and the source are in-phase, the output amplitude is enhanced through the transformer coupling effect and therefore, achieves greater phase noise. From the measurement results of this design circuit, the measured frequency tuning range is 21.53 ~ 2.2 GHz; the measured phase noise is -102.08 dBc/Hz at the 1 MHz offset from the center frequency of 21.6 GHz carrier frequency. The proposed VCO dissipates 11.74 mW, and the overall chip area including the buffer amplifiers is 0.665 mm2.
    In the design of the 2.2 GHz fractional-N phase-locked loop, including a phase frequency detector, a charge pump, a loop filter, a voltage-controlled oscillator, a multi-modulus divider and a delta-sigma modulator are involved. By dithering the division ratio, a fractional divider is implemented, and it achieves high bandwidth and fine frequency resolution. From the measurement results of the proposed fractional-N PLL, the reference frequency is set to 20 MHz, the measured frequency tuning range is 2.18 GHz to 2.45 GHz. The measured phase noise is -125 dBc/Hz at the 10 MHz offset from the center frequency of 2.213 GHz, and the output power is above -7.26 dBm. The proposed PLL dissipates 18.9 mW and occupies an area of 1.13 mm2.

    第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文架構 4 第二章 K-band變壓器回授壓控振盪器 5 2.1 振盪器概述 5 2.1.1 振盪器理論 5 2.1.2 環形振盪器(Ring Oscillator) 6 2.1.3 共振腔振盪器(LC-tank Oscillator) 6 2.2 振盪器特性 9 2.2.1 品質因子 9 2.2.2 頻率可調範圍(Tunning Range)與KVCO 10 2.2.3 相位雜訊(Phase Noise) 10 2.3 K-band變壓器回授壓控振盪器 13 2.3.1 毫米波振盪器挑戰 13 2.3.2 變壓器介紹 13 2.3.3 振盪器架構 16 2.3.4 變壓器回授分析 17 2.3.5 整體電路架構概述 22 2.4 模擬結果 25 2.4.1 變壓器模擬結果 25 2.4.2 振盪器模擬結果 25 第三章 2.2 GHz非整數型鎖相迴路 27 3.1 鎖相迴路簡介 27 3.1.1 整數型鎖相迴路 27 3.1.2 小數型鎖相迴路 28 3.2 鎖相迴路分析 30 3.2.1 線性模型 30 3.2.2 穩定度分析 32 3.2.3 Delta-Sigma(ΔΣ)調變器 35 3.2.4 雜訊分析 40 3.3 非整數型鎖相迴路設計 42 3.3.1 系統設計 42 3.3.2 相位頻率偵測器 42 3.3.3 充電泵 45 3.3.4 迴路濾波器 48 3.3.5 壓控振盪器 51 3.3.6 除頻器 53 3.3.7 Delta-Sigma(ΔΣ)調變器 56 3.3.8 佈局考量 63 3.4 模擬結果 64 第四章 量測結果與討論 65 4.1 K-band 變壓器回授壓控振盪器 65 4.1.1 量測考量 65 4.1.2 量測結果 67 4.2 2.2 GHz非整數型鎖相迴路 71 4.2.1 量測考量 71 4.2.2 量測結果 73 第五章 結論 77 參考文獻 78

    [1] Gigabyte, “What is 5G? An Introduction to 5G Networks and Applications,” Available on: https://www.gigabyte.com/Article/what-you-must-know-before-moving-into-5g
    [2] Qualcomm, “Global update on spectrum for 4G & 5G,” Available on: https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf
    [3] H.-H. Hsieh and L.-H. Lu, “A low-phase-noise K-band CMOS VCO,” in IEEE Microwave and Wireless Components Letters, vol. 16, no. 10, pp. 552-554, Oct. 2006.
    [4] K. Kwok and H. C. Luong, “Ultra-low-Voltage high-performance CMOS VCOs using transformer feedback,” in IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 652-660, March 2005.
    [5] C. Li, T. Wang, C. Kuo, M. Chuang and H. Wang, “A 21 GHz Complementary Transformer Coupled CMOS VCO,” in IEEE Microwave and Wireless Components Letters, vol. 18, no. 4, pp. 278-280, April 2008.
    [6] H. Chang and Y. Chiu, “K-Band CMOS Differential and Quadrature Voltage-Controlled Oscillators for Low Phase-Noise and Low-Power Applications,” in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 46-59, Jan. 2012.
    [7] S. Guo et al., “A Low-Voltage Low-Phase-Noise 25-GHz Two-Tank Transformer-Feedback VCO,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp. 3162-3173, Oct. 2018.
    [8] F. Gardner, “Charge-Pump Phase-Lock Loops,” in IEEE Transactions on Communications, vol. 28, no. 11, pp. 1849-1858, November 1980.
    [9] K. Shu, E. Sanchez-Sinencio, J. Silva-Martinez and S. H. K. Embabi, “A 2.4-GHz monolithic fractional-N frequency synthesizer with robust phase-switching prescaler and loop capacitance multiplier,” in IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 866-874, June 2003.
    [10] T. A. D. Riley, M. A. Copeland and T. A. Kwasniewski, “Delta-sigma modulation in fractional-N frequency synthesis,” in IEEE Journal of Solid-State Circuits, vol. 28, no. 5, pp. 553-559, May 1993.
    [11] B. Razavi, RF Microelectronics, second edition, Prentice Hall, Inc., 2012.
    [12] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” in Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
    [13] H. Wang et al., “MMICs in the millimeter-wave regime,” in IEEE Microwave Magazine, vol. 10, no. 1, pp. 99-117, February 2009.
    [14] P. Heydari, “Millimeter-wave frequency generation and synthesis in Silicon,” IEEE Custom Integrated Circuits Conference, San Diego, CA, USA, 2018, pp. 1-49.
    [15] Y. Hu, T. Siriburanon and R. B. Staszewski, “A Low-Flicker-Noise 30-GHz Class-F23 Oscillator in 28-nm CMOS Using Implicit Resonance and Explicit Common-Mode Return Path,” in IEEE Journal of Solid-State Circuits, vol. 53, no. 7, pp. 1977-1987, July 2018.
    [16] J. Yang, C. Kim, D. Kim and S. Hong, “Design of a 24-GHz CMOS VCO With an Asymmetric-Width Transformer,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 3, pp. 173-177, March 2010.
    [17] J. Yin and H. C. Luong, “A 57.5–90.1-GHz Magnetically Tuned Multimode CMOS VCO,” in IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1851-1861, Aug. 2013.
    [18] J. R. Long, “Monolithic transformers for silicon RF IC design,” in IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
    [19] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” in IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
    [20] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” in IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
    [21] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, MA: Cambridge Univ. Press, 2004.
    [22] B. Razavi, Design of CMOS Phase-Locked Loops: From Circuit Level to Architecture Leve, Cambridge University Press,2020.
    [23] 劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006.
    [24] Y. Matsuya and Y. Akazawa, “Multi-stage noise shaping technology and its application to precision measurement,” IEEE Instrumentation and Measurement Technology Conference, 1992, pp. 540-544.
    [25] B. Miller and R. J. Conley, “A multiple modulator fractional divider,” in IEEE Transactions on Instrumentation and Measurement, vol. 40, no. 3, pp. 578-583, June 1991.
    [26] M. H. Perrott, M. D. Trott and C. G. Sodini, “A modeling approach for Σ-∆ fractional-N frequency synthesizers allowing straightforward noise analysis,” in IEEE Journal of Solid-State Circuits, vol. 37, no. 8, pp. 1028-1038, Aug. 2002.
    [27] S. A. Osmany, F. Herzel, K. Schmalz, and W. Winkler, “Phase noise and jitter modeling for fractional-N PLLs,” in Adv. Radio Sci., vol. 5, pp. 313-320, 2007.
    [28] W. Chen, M. E. Inerowicz and B. Jung, “Phase Frequency Detector With Minimal Blind Zone for Fast Frequency Acquisition,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 12, pp. 936-940, Dec. 2010.
    [29] M. Mansuri, D. Liu and C. -. K. Yang, “Fast frequency acquisition phase-frequency detectors for Gsamples/s phase-locked loops,” in IEEE Journal of Solid-State Circuits, vol. 37, no. 10, pp. 1331-1334, Oct. 2002.
    [30] C. T. Charles and D. J. Allstot, “A buffered charge pump with zero charge sharing,” IEEE International Symposium on Circuits and Systems, 2008, pp. 2633-2636.
    [31] W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” IEEE International Symposium on Circuits and Systems, 1999, pp. 545-548.
    [32] K. Shu and E. Sánchez-Sinencio, CMOS PLL Synthesizers: Analysis and Design, Springer 2005.
    [33] T. Lin, C. Ti and Y. Liu, “Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-Sigma Fractional-N PLLs,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 877-885, May 2009.
    [34] Bram De Muer and M. S. J. Steyaert, “On the analysis of ΔΣ fractional-N frequency synthesizers for high-spectral purity,” in IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 11, pp. 784-793, Nov. 2003.
    [35] X. P. Yu, M. A. Do, W. M. Lim, K. S. Yeo and J. -. Ma, “Design and Optimization of the Extended True Single-Phase Clock-Based Prescaler,” in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 11, pp. 3828-3835, Nov. 2006.
    [36] C. S. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegeli and Z. Wang, “A family of low-power truly modular programmable dividers in standard 0.35 µm CMOS technology,” in IEEE Journal of Solid-State Circuits, vol. 35, no. 7, pp. 1039-1045, July 2000.
    [37] V. Thenmozhi and R. Muthaiah, “Optimized low power full adder design,” International Conference on Networks & Advances in Computational Technologies, Thiruvanthapuram, 2017, pp. 86-89.
    [38] Y. Chang and H. Lu, “A K-Band High-Efficiency VCO Using Current Reused Technique,” in IEEE Microwave and Wireless Components Letters, vol. 27, no. 12, pp. 1134-1136, Dec. 2017.
    [39] T. N. Nguyen and J. Lee, “A K-band CMOS Differential Vackar VCO With the Gate Inductive Feedback,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 5, pp. 257-261, May 2012.
    [40] P. Wang et al., “Design of 24GHz CMOS VCO using armstrong topology with asymmetric transformer,” Asia-Pacific Microwave Conference, 2014, pp. 956-958.
    [41] C.-L. Ti, Y.-H. Liu and T.-H Lin, “A 2.4-GHz fractional-N PLL with a PFD/CP linearization and an improved CP circuit,” IEEE International Symposium on Circuits and Systems, Seattle, WA, 2008, pp. 1728-1731.
    [42] K. Choi, S. Kim, S. Lee, B. Lee and W. Choi, "A 990- µW 1.6-GHz PLL Based on a Novel Supply-Regulated Active-Loop-Filter VCO," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 6, pp. 311-315, June 2013.
    [43] Y. Yang and S. Lu, “A Quantization Noise Pushing Technique for Delta Sigma Fractional-N Frequency Synthesizers,” in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 4, pp. 817-825, April 2008.
    [44] W. Lee and S. Cho, “A 2.4-GHz reference doubled fractional-N PLL with dual phase detector in 0.13-μm CMOS,” IEEE International Symposium on Circuits and Systems, Paris, 2010, pp. 1328-1331.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE