簡易檢索 / 詳目顯示

研究生: 簡志華
Chien, Chih-Hua
論文名稱: 氧化鋁基板與氮化鎵基板上之鈦酸鎂薄膜特性研究
Properties of MgTiO3 Thin Films on Sapphire and GaN Substrates
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 101
中文關鍵詞: 鈦酸鎂氧化鋁氮化鎵磊晶
外文關鍵詞: MgTiO3, sapphire, GaN, epitaxial
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨為研究於氧化鋁基板及氮化鎵基板上成長鈦酸鎂(MgTiO3)的磊晶層。研究中是用氧化鎂(MgO)與二氧化鈦(TiO2)粉末燒結成鈦酸鎂靶材,並利用射頻濺鍍鈦酸鎂層。
    在氧化鋁基板上沉積鈦酸鎂的研究中,藉由控制退火溫度、基板成長溫度及退火時間等參數,來成長磊晶的鈦酸鎂層,於基板成長溫度300℃ 並退火60 分鐘1100 ℃,磊晶層有較好的品質,實驗中也發現其他結晶相的鈦酸鎂(Mg2TiO4),並且成功磊晶。由光學性質與晶格間的匹配程度,我們推測鈦酸鎂適合用來製作成鈮酸鋰與氧化鋁間的緩衝層。
    在氮化鎵基板上沉積鈦酸鎂的研究中,藉由調變退火溫度、基板成長溫度及氧氣分壓比例等參數,來成長鈦酸鎂的磊晶層,氬氧氣比例50/50 退火1100℃ 持溫60 分鐘,鈦酸鎂有較好的結晶性,實驗中也發現其他結晶相的鈦酸鎂(Mg2TiO4),並且成功磊晶。我們使用鈦酸鎂為氧化層材料,閘極金屬為鋁,以金氧半二極體的結構(Al/MgTiO3/GaN)來研究電容器的特性。

    This thesis aimed at evaluating the possibility to fabricate the epitaxial MgTiO3 layers on sapphire and GaN substrates. MgTiO3 targets that were synthesized by traditional solid-state method used MgO and TiO2 powders as the starting materials. The MgTiO3 layers were grown by RF sputter.
    Epitaxial MgTiO3 layers were deposited on sapphire substrates by controlling the annealing temperature, the substrate temperature, and the annealing time. MgTiO3 layers were grown with better epitaxial quality at 300 ℃ of the substrate temperature and 1100 ℃ for 60 minutes of the annealing temperature. In the experiments, we found the other crystalline magnesium titanate(Mg2TiO4) and it was successfully epitaxial on sapphire substrates. We think MgTiO3 was suitable to be a buffer layer between lithium niobate and sapphire because of the optical properties and lattice match.
    Epitaxial MgTiO3 layers were deposited on GaN substrates by controlling the annealing temperature, the substrate temperature, and the. MgTiO3 layers were grown with better epitaxial quality on 50/50 of the Ar/O2 ratio and at 1100 ℃ for 60 minutes of the annealing temperature. In the experiments, we also found the other crystalline magnesium titanate(Mg2TiO4) and it was successfully epitaxial on sapphire substrates. The MgTiO3 was used as an oxide layer and aluminum was used as the gate metal to build the MOS diode, of which the properties were studied.

    目錄 中文摘要 ............................................... I English Abstract .......................................... II 致謝 ................................................. III 目錄 .................................................. V 表目錄 ................................................ VII 圖目錄 ............................................... VIII 第一章 緒論 ......................................... 1 1-1 前言 ......................................... 1 1-2 鈦酸鎂的特性與應用 ............................... 2 1-3 氧化鋁單晶的特性與應用 ........................... 2 1-4 氮化鎵的特性與應用 ............................... 3 1-5 論文架構及研究方向 ............................... 4 第二章 文獻回顧 ....................................... 6 2-1 陶瓷燒結理論 ................................... 6 2-1-1 燒結理論 ................................... 6 2-2 文獻回顧 ....................................... 8 2-2-1 鈦酸鎂薄膜成長於氧化鋁基板 ....................... 8 2-2-2 鈦酸鎂薄膜成長於氮化鎵基板 ....................... 9 2-3 MOS結構理論基礎 ................................ 13 2-3-1 反轉區電容的頻率效應 ........................... 15 2-3-2 頻散效應(Frequency Dispersion Effect)及其修正 ............ 15 2-4 MIS電容器結構的缺陷型態及其影響 ...................... 16 2-4-1 缺陷對平帶電壓造成的影響 ....................... 17 2-4-2 氧化層缺陷對電滯曲線方向的影響 ................... 18 2-5 電容器的理論計算 ............................... 19 第三章 實驗方法與步驟 ................................. 34 3-1 鈦酸鎂靶材製作 ................................. 34 3-2 氧化鋁單晶基板上試片製作 ........................... 34 3-2-1 氧化鋁與氮化鎵試片清洗 ......................... 35 3-2-2 鈦酸鎂濺鍍流程 ............................... 36 3-2-3 氧化層後退火 ............................... 36 3-3 氮化鎵MOS結構的製作 ............................ 37 3-3-1 氮化鎵試片準備 ............................... 37 3-3-2 鈦酸鎂濺鍍流程 ............................... 37 3-3-3 氧化層後退火 ............................... 38 3-3-4 電極製備及後退火 ............................. 38 3-3-5 歐姆接觸 ................................... 39 3-4 材料與元件特性分析 ............................... 39 3-4-1 X光繞射分析儀 .............................. 39 3-4-2 掃描式電子顯微鏡 ............................. 41 3-4-3 X光能量散射光譜儀 ............................ 41 3-4-4 原子力顯微鏡 ............................... 42 3-4-5 紫外光/可見光光譜儀與薄膜特性分析儀 ................ 42 3-4-6 IV及CV特性量測 ............................... 43 第四章 結果與討論 ..................................... 54 4-1 在氧化鋁基板上成長具有優選方向的鈦酸鎂薄膜 ............. 54 4-1-1 鈦酸鎂薄膜在氧化鋁基板上的堆疊方式 ............... 54 4-1-2 不同後退火條件對鈦酸鎂晶相的影響 ................. 56 4-1-3 基板成長溫度變化對結晶面與結晶性的影響 ............. 57 4-1-4 後退火時間長短的討論與比較 ..................... 58 4-1-5 鈦酸鎂薄膜XRD φ scan分析 ....................... 59 4-1-6 鈦酸鎂光學基本特性的量測 ....................... 60 4-1-7 結論 ..................................... 61 4-2 在氮化鎵基板上成長具有優選方向的鈦酸鎂薄膜 ............. 62 4-2-1 鈦酸鎂薄膜在氮化鎵基板上的排列 ................... 63 4-2-2 不同後退火條件對鈦酸鎂晶相的影響 ................. 64 4-2-3 探討基板溫度變化對結晶面的影響 ................... 64 4-2-4 氬氣與氧氣比對結晶性的影響 ..................... 65 4-2-5 鈦酸鎂薄膜XRD φ scan分析 ....................... 66 4-2-6 鈦酸鎂MOS特性的量測 .......................... 67 4-2-7 結論 ..................................... 67 第五章 結論及未來規劃 ................................. 94 5-1 結論 ......................................... 94 5-2 未來規劃 ..................................... 95 參考文獻 ............................................. 97 表目錄 表 1 - 1、常見的介電材料特性[1] .............................. 5 表1 - 2、相關半導體特性[2-3]............................... 5 表 3 - 1、鈦酸鎂於氧化鋁上之濺鍍條件......................... 44 表3 - 2、鈦酸鎂在氧化鋁上退火條件........................... 44 表3 - 3、鈦酸鎂於氮化鎵上之濺鍍條件......................... 45 表3 - 4、鈦酸鎂於氮化鎵上之退火條件......................... 45 表 4 - 1、Sapphire與MgTiO3 的比較........................... 69 表4 - 2、Mg2TiO4 的晶格介紹.............................. 69 表4 - 4、基板溫度300 oC退火不同時間的鈦酸鎂XRD(003)半高寬........ 70 表4 - 3、不同基板溫度的鈦酸鎂XRD(003)半高寬.................. 70 表 4 - 5、基板溫度500 oC退火不同時間的鈦酸鎂XRD(003)半高寬........ 71 表4 - 6、基板不加溫不同氬氧比例的鈦酸鎂XRD(003)半高寬............ 71 表4 - 7、基板溫度300 oC不同氬氧比例的鈦酸鎂XRD(003)半高寬........ 71 圖目錄 圖 2 - 1、陶瓷燒結示意圖。(a)顆粒間的鬆散接觸;(b)顆粒之間形成頸部(c)晶界向小 晶粒方向移動並逐漸消失,晶粒逐漸長大;(d)顆粒互相堆積形成多晶聚合 體............................................ 25 圖2 - 2、N型半導體在聚集區的狀況下所呈現的(a)能帶圖,(b)隨電壓改變所對應的 電荷分佈圖........................................ 25 圖2 - 3、N型半導體在空乏區的狀況下所呈現的(a)能帶圖,(b)隨電壓改變所對應的 電荷分佈圖........................................ 26 圖2 - 4、P型半導體在反轉區的狀況下所呈現的(a)能帶圖(b)隨電壓改變所對應的電 荷分佈圖........................................ 26 圖2 - 5、N型半導體在高頻及低頻下電容曲線[23]...................... 27 圖2 - 6、小訊號電容等效電路模式。(a)合併串並聯正確模式,(b)串聯電路模式[23] .............................................. 27 圖2 - 7、頻散現象修正前後的電容曲線[23]......................... 28 圖2 - 8、存在於金氧半電容器結構裡常見的缺陷...................... 28 圖2 - 9、N型半導體電容器氧化層正電荷對平帶電壓的影響[25]............ 29 圖2 - 10、N型半導體電容器氧化層負電荷對平帶電壓的影響[25]............ 29 圖2 - 11、可移動金屬離子造成電滯曲線的效應[24]................... 30 圖2 - 12、氧化層內電荷造成電滯曲線的效應[24]..................... 30 圖2 - 13、金氧半電容器能帶圖................................ 31 圖2 - 14、高低頻下量測等效電路圖。(a)高頻,(b)低頻。................ 31 圖2 - 15、介面能態密度高頻量測[24]........................... 32 圖2 - 16、介面能態密度低頻量測[24]........................... 32 圖2 - 17、電導量測介面能態密度等效電路圖[24]..................... 33 圖2 - 18、電導量測介面能態密度Gp/ω對ω圖[24] ..................... 33 圖3 - 1、MgO-TiO2 系統的相圖............................... 46 圖3 - 2、固態法燒結製備靶材實驗步驟............................ 47 圖3 - 3、各種莫耳比例合成的鈦酸鎂之XRD分析..................... 48 圖3 - 4、靶材實體圖........................................ 48 圖3 - 5、藍寶石試片製作流程圖................................ 49 圖3 - 6、試片清洗流程圖.................................... 50 圖3 - 7、石英管爐退火示意圖.................................. 51 圖3 - 8、退火條件........................................ 51 圖3 - 9、氮化鎵試片製作流程圖................................ 52 圖3 - 10、氮化鎵電容器元件圖(Shadow mask pattern) .................. 53 圖3 - 11、氮化鎵電容器元件示意圖.............................. 53 圖4 - 1、氧化鋁的單位晶胞.................................. 72 圖4 - 2、鈦酸鎂的單位晶胞.................................. 72 圖4 - 3、鈦酸鎂在c面氧化鋁上的堆疊............................ 73 圖4 - 4、接續的排列........................................ 74 圖4 - 5、旋轉60 o的排列.................................... 74 圖4 - 6、(111)Mg2TiO4 的上視圖................................ 75 圖4 - 7、(111)Mg2TiO4 的側面圖................................ 75 圖4 - 8、(111)Mg2TiO4 在氧化鋁上的堆疊.......................... 76 圖4 - 9、基板未加熱,不同退火溫度退火60 分鐘的XRD............... 76 圖4 - 10、不同基板溫度的XRD(退火條件為1100 oC,60 min) ............. 77 圖4 - 11、基板溫度RT、200 oC 、300 oC、500 oC的EDS ................ 78 圖4 - 12、退火1100 oC持溫60 分鐘基板溫度(a)室溫(b)200 oC(c) 300 oC(d)500 oC的 SEM.......................................... 79 圖4 - 13、基板溫度300 oC,未退火及不同退火時間之XRD............... 79 圖4 - 14、基板溫度300 oC,(a)未退火及退火(b)5 分鐘(c)30 分鐘之SEM...... 80 圖4 - 15、基板溫度500 oC,未退火及不同退火時間之XRD............... 80 圖4 - 16、基板溫度500 oC,(a)未退火及退火(b)5 分鐘(c)30 分鐘之SEM...... 81 圖4 - 17、基板溫度(a)300 oC(b)500 oC,退火5 分鐘之SEM............... 82 圖4 - 18、鈦酸鎂晶格(a)俯視圖(b)側視圖.......................... 83 圖4 - 19、(012)MgTiO3 的XRD φ scan ........................... 83 圖4 - 20、(400)Mg2TiO4 的XRD φ scan............................ 84 圖4 - 21、MgTiO3 的折射係數及消光係數.......................... 84 圖4 - 22、MgTiO3 的穿透率及反射率............................ 85 圖4 - 23、氮化鎵的單位晶胞.................................. 85 圖4 - 24、氮化鎵的HCP排列.................................. 86 圖 4 - 25、(003)MgTiO3 在氮化鎵上的旋轉30 o堆疊.................... 86 圖 4 - 26、(003)MgTiO3 在氮化鎵上旋轉90 o的堆疊.................... 87 圖4 - 27、(111)Mg2TiO4 在氮化鎵上的堆疊........................ 87 圖4 - 28、基板不加溫下不同退火溫度的XRD....................... 88 圖4 - 29、基板溫度300 oC下不同退火溫度的XRD..................... 88 圖4 - 30、基板不加溫下不同氬氧比的XRD......................... 89 圖4 - 31、基板不加溫下不同氬氧比的EDS........................ 89 圖 4 - 32、基板不加溫後退火1100 oC下,不同氬氧比(a)100/0(b)90/10 (c)70/30(d)50/50 的SEM........................................ 90 圖4 - 33、基板溫度300 oC下不同氬氧比的XRD..................... 91 圖4 - 34、氮化鎵基板上(012)MgTiO3 的XRD φ scan ................... 91 圖4 - 35、氮化鎵基板上(400)Mg2TiO4 的XRD φ scan.................. 92 圖4 - 36、鈦酸鎂薄膜C-V曲線及介電損耗因數....................... 92 圖4 - 37、鈦酸鎂薄膜J-V曲線................................ 93 圖4 - 38、鈦酸鎂薄膜AFM................................... 93

    參考文獻
    1. J-P Locquet, C. Marchiori, M. Sousa, J. Fompeyrine, and J. W. Seo, “High-k dielectrics for the gate stack”, J. Appl. Phys., 100, 051610, 2006.
    2. M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, “Properties of advanced semiconductor materials :GaN, AlN, InN, BN, SiC, SiGe”, Wiley, 2001.
    3. M. Levinshtein, S. Rumyantsev, and M. Shur, “Handbook series on semiconductor parameters”, World Scientific, 1996.G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys., 89, 5243, 2001.
    4. 肖定全,陶瓷材料,新文京開發出版,49-55,2003。
    5. F. V. Lenel, “Sintering in Presence of a Liquid Phase”, Trans. Am. Inst. Mining. Met. Engrs., 878-905, 1948.
    6. V. N. Eremenko, Y. V. Naidich, and I. Aienko, “Liquid phase sintering”, New York: Consultants Bureau, 1970, ch. 4.
    7. Schaffer and Saxena, “The Science and Design of Engineering Materials”, Chap3.
    8. 鄭景太,淺談高頻低損失介電材料,工業材料,176 期, 90 年8 月。
    9. J. Lee and C. W. Choi, “Sol–Gel Derived Epitaxial MgTiO3 Thin Films”, Jpn. J. Appl. Phys., 38, 3651–3654, 1999.
    10. S. Kang, W. Lim, and J. Lee, “Growth of MgTiO3 thin films by pulsed laser deposition and their electrical Properties”, Integrated Ferroelectrics, 31, 97-104,2000.
    11. Y. H. Choi, and J. Lee, “MgTiO3 thin films prepared by metalorganic solution deposition and their properties”, Thin Solid Films, 385, 43-47, 2001.
    12. T. A. Derouin, C. D. E. Lakeman, X. H. Wu, J. S. Speck, and F. F. Lange, “Effect of lattice mismatch on the epitaxy of sol-gel LiNbO3 thin films”, J. Mater. Res., 12, 5, 1997.
    13. C. L. Huang, and Y. B. Chen, “The effect of deposition temperature and RF power on the electrical and physical properties of the MgTiO3 thin films”, J. Cryst. Growth, 285, 586–594, 2005.
    14. Y. B. Chen, C. L. Huang, and S.-H. Lin, “The effect of deposition temperature and chamber pressure on the electrical and physical properties of the MgTiO3 thin films”, J. Alloys Comps., 480, 897–902, 2009.
    15. A. M. Herrero, B. P. Gila, C. R. Abernathy, S. J. Pearton, V. Craciun, K. Siebein, and F. Ren, “Epitaxial growth of Sc2O3 films on GaN”, Appl. Phys. Lett., 89, 092117, 2006.
    16. A. Y. Polyakov, N. B. Smirnov, B. P. Gila, M. Hlad, A. P. Gerger, C. R. Abernathy, and S. J. Peartonb, “Studies of Interface States in Sc2O3/GaN, MgO/GaN, and MgScO/GaN structures”, J. Electrochem. Soc., 154, H115-H118 , 2007.
    17. L. M. Lin and P. T. Lai, “Effects of NO Annealing and GaOxNy Interlayer on GaN Metal-Insulator-Semiconductor Capacitor with SiO2 Gate Dielectric”, J. Electrochem. Soc., 154, G58-G62, 2007.
    18. Y. C. Chang, H. C. Chiu, Y. J. Lee, M. L. Huang, K. Y. Lee, M. Hong, Y. N. Chiu, J. Kwo, and Y. H. Wang, “Structural and electrical characteristics of atomic layer deposited high k HfO2 on GaN”, Appl. Phys. Lett., 90, 232904, 2007.
    19. J. Kim, B. Gila, R. Mehandru, J. W. Johnson, J. H. Shin, K. P. Lee, B. Luo, A. Onstine, C. R. Abernathy, S. J. Pearton, and F. Ren, “Electrical Characterization of GaN Metal Oxide Semiconductor Diodes Using MgO as the Gate Oxide”, J. Electrochem. Soc., 149, G482-G484, 2002.
    20. Y. C. Chang, W. H. Chang, H. C. Chiu, L. T. Tung, C. H. Lee, K. H. Shiu, M. Hong, J. Kwo, J. M. Hong, and C. C. Tsai , “Inversion-channel GaN metal-oxide-semiconductor field-effect transistor with atomic-layer-deposited Al2O3 as gate dielectric”, Appl. Phys. Lett., 93, 053504, 2008.
    21. C. Liu, E. F. Chor, and L. S. Tan, “Structural and electrical characterizations of the pulsed-laser-deposition-grown Sc2O3/GaN heterostructure”, Appl. Phys. Lett., 88, 222113, 2006.
    22. D. A. Neamen, “Semiconductor physics and devices :basic principles”, Irwin, 1992.
    23. K. J. Yang, and C. Hu, “MOS capacitance measurements for high-leakage thin dielectrics”, IEEE trans. on Elec. Devices, 46, 1500, 1999.
    24. H-T Lue, C-Y Liu, and T-Y Tseng, “A improves two-frequency method of capacitance measurement for SrTiO3 as high-k gate dielectric”, IEEE Electron Device Letters, 23, 553, 2002.
    25. Dieter K. Schroder, “Semiconductor Material and Device Characterization”, 2rd Edition, John Wiley and Cons, Inc., 1998.
    26. E. F. Nicollian, and J. R. Brews, “MOS Physics and Technology”, New York, Wiley, 2003.
    27. L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, and J. K. Sheu, “High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure”, Appl. Phys. Lett., 77, 3788, 2000.
    28. 汪建民,“材料分析”,中國材料科學學會。
    29. D-S Leem, J-O Song, H-G Hong, J. S. Kwak, Y. Park, and T-Y Seong, “Low resistance and highly reflective Sb-Doped SnO2/Ag ohmic contacts to p-Type GaN for flip-chip LEDs”, Electrochemical and Solid-State Letters, 7, G219, 2004.
    30. R. Kim, Y. Kim, and J-W Park, “Electrical properties of evaporated MgO-TiO2 protective layer for AC PDP”, J. Mater. Sci.,36 ,1469-1473 ,2001.
    31. H. Ohsato, T. Kato, S. Koketsu, R. D. Saxena, and T. Okuda, “Epitaxial orientation and a growth model of (00.1) GaN thin film on (111) spinel substrate”, J. Cryst. Growth, 189, 202-207, 1998.
    32. R. L. Millard, R. C. Peterson, B. K. Hunter, “Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and Rietveld refinement of X-ray diffraction data”, Am. Mineral., 80 , 885-896, 1995.
    33. Y. Akiyama, K. Shitanaka, and H. Murakami, “Modeling Titanium Oxide Growth by Chemical Vapor Deposition Using Titanium Tetra Isopropoxide”, J. Chem. Eng. Jpn., 41, 779–784, 2008.
    34. A. Masuda and K. Nashimoto, “Orientation of MgO Thin Films on Si(100) and GaAs(100) Prepared by Electron-Beam Evaporation”, Jpn. J. Appl. Phys., 33, L793-L796, 1994.
    35. J. Zeng, H. Wang, S. Shang, Z. Wang, C. Lin , “Preparation of textured Mg2TiO4 thin films on Si substrate by atmospheric pressure metallorganic chemical vapour deposition”, J. Mater. Sci : Mater. Electron., 8, 159 - 162, 1997.
    36. Y. Shibata, N. Kuze, M. Matsui, M. Kanai, and T. Kawai,” Strain Mechanism of LiNbO3/Sapphire Heterostructures Grown by Pulsed Laser Deposition”, Jpn. J. Appl. Phys., 36, 7344-7347, 1997.
    37. X.M. Chen, L. Li, and X.Q. Liu , “Layered complex structures of MgTiO3 and CaTiO3 dielectric ceramics”, Mater. Sci. and Eng. B, 99, 255-25, 82003.
    38. I. Ahmad, M. Holtz, N. N. Faleev, and H. Temkin, “Dependence of the stress–temperature coefficient on dislocation density in epitaxial GaN grown on a-Al2O3 and 6H–SiC substrates”, J. Appl. Phys., 95, 1692, 2004.

    無法下載圖示 校內:2015-08-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE