| 研究生: |
鄭詰霖 Cheng, Chieh-Lin |
|---|---|
| 論文名稱: |
人工智慧偵測近岸水線的多類別影像分割之深度學習 Deep Learning for Multi-Category Image Segmentation of Coastal Waterlines Detection |
| 指導教授: |
莊士賢
Chuang, Laurence Z. H. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 海洋科技與事務研究所 Institute of Ocean Technology and Marine Affairs |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 176 |
| 中文關鍵詞: | 影像分割 、深度學習 、溯升水線 、碎浪水線 、光學影像 |
| 外文關鍵詞: | Image Segmentation, Deep Learning, Wave Runup Waterline, Wave Breaking Waterline, Optical Image |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的是選用不同的深度學習架構,並調整超參數項,以優化 AI模型在分割海岸光學影像中不同類型水線的效能,進而透過案例測試,評選出各架構的最優模式,以利於未來海岸研究或應用之所需。本研究進行 AI模型之深度學習所需的光學影像來源,是本研究室先前在台南七股和安平地區的兩段海岸所執行的無人機航拍作業所攝錄的光學影像。為了提高影像中海岸水線之標注資料的準確性,本研究自行設計與開發出一套結合何(2023)改良後的水線偵測演算法與人工操作的半自動化標注軟體,以產生光學影像的對應標籤資料。
本研究選用基於 UNet 的三種模型架構(UNet、UNet++和 DeepUNet)進行深度學習,並利用開源工具 Optuna 來評選出各架構中最具影響力的超參數項―損失函數加權方式,再透過統計分析先決定出各架構的其他影響程度較小的超參數項之初步組合設定。然後將每種架構的初步超參數組合逐一搭配損失函數的五種加權方式,總共得出 15 個模型,再以測試集的評估指標分數檢驗各模型的水線偵測效能,以選出各架構的最優模式:
1. UNet 架構:損失函數為 Focal 加權、批次大小為 2、訓練週期為 150次、學習率為 0.001、優化器為 Adamax。
2. UNet++架構:損失函數為 Focal 加權、批次大小為 2、訓練週期為150 次、學習率為 0.00001、優化器為 Adam。
3. DeepUNet 架構:損失函數為逆頻率加權、批次大小為 4、訓練週期為 99 次、學習率為 0.001、優化器為 Adam。
進一步測試各架構的最優模式對於“複雜水線資料集”與“複雜光源資料集”的水線偵測能力,結果顯示三個最優模式都能夠準確地分辨出水線的位置與類型,且具有良好的泛化能力,顯示出在海岸監測與防災應用具有重要的應用價值。在這三個最優模式中,又以 UNet++的綜合評估指標分數最高。
The purpose of this study is to select different deep learning architectures and adjust hyperparameters to optimize AI model performance in segmenting coastal waterlines in optical images, which were captured by drones along two coastal sections in Qigu and Anping, Tainan. To improve the accuracy of annotated data, a semi-automated annotation software was developed, combining Ho’s (2023) improved waterline detection algorithm with manual operations.
This study employs three UNet-based architectures (UNet, UNet++, and DeepUNet) for deep learning. Using the open-source tool Optuna, the most influential hyperparameter, the loss function weighting method, was selected. Preliminary combinations of other hyperparameters were determined through statistical analysis. Each architecture’s preliminary hyperparameter combinations were paired with five loss function weighting settings, resulting in 15 models. The waterline detection performance of each model was tested using evaluation index scores to select the optimal model for each architecture.
Further testing of the optimal models on "complex waterline" and "complex lighting" datasets demonstrated that all three could accurately identify waterline positions and types, exhibiting good generalization capabilities. This indicates significant application value in coastal monitoring and disaster prevention. Among these, UNet++ with the best hyperparameter set (loss function weighted by Focal, batch size of 2, 150 epochs, learning rate of 0.00001, optimizer Adam) achieved the highest overall evaluation score.
中文文獻
1. 何永寶. (2023). 以深度學習架構辨識海岸光學影像中瞬時波浪溯升水線之研究 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/vuk868
2. 周嘉銘. (2022). 無人機空拍海灘之光學影片的波浪溯升特性分析 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/ndjeug
3. 林柏青, 江玟德, 陳志弘. (2013). 臺灣港灣近岸海域漂沙調查研究(4/4).
4. 洪敬媛. (2009). 臺南網子寮沙洲近期地形變動 國立臺灣師範大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/25m84a
5. 莊士賢. (2020). 海灘沖刷帶的波浪溯升與溯降之 UAV 影像分析.
6. 莊士賢, 陳禹儒, 鍾育仁,周嘉銘. (2020). 以UAV航測影像序列偵測海岸灘線之變化. 第42屆海洋工程研討會論文集, 國立台灣海洋大學.
7. 鄭雅云. (2019). 無人飛行載具應用於海岸灘線量測之可行性研究 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/bjyc46
8. 蕭立綸. (2012). 台南七股沙洲地形變遷研究 國立高雄師範大學]. 臺灣博碩士論文知識加值系統. 高雄市. https://hdl.handle.net/11296/48xuvw
英文文獻
1. Aarninkhof, S. G., Caljouw, M., & Stive, M. J. (2001). Video-based, quantitative assessment of intertidal beach variability. In Coastal Engineering 2000 (pp. 3291-3304).
2. Agenda, I. (2016). The new plastics economy rethinking the future of plastics. World Economic Forum,
3. Ahmadvand, A., & Daliri, M. R. (2015). Improving the runtime of MRF based method for MRI brain segmentation. Applied Mathematics and Computation, 256, 808-818.
4. Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining,
5. Almar, R., Blenkinsopp, C., Almeida, L. P., Catalán, P. A., Bergsma, E., Cienfuegos, R., & Viet, N. T. (2019). A new remote predictor of wave reflection based on runup asymmetry. Estuarine, Coastal and Shelf Science, 217, 1-8.
6. Almar, R., Cienfuegos, R., Catalán, P. A., Michallet, H., Castelle, B., Bonneton, P., & Marieu, V. (2012). A new breaking wave height direct estimator from video imagery. Coastal Engineering, 61, 42-48.
7. Andriolo, U. (2019). Nearshore wave transformation domains from video imagery. Journal of Marine Science and Engineering, 7(6), 186.
8. Andriolo, U., Mendes, D., & Taborda, R. (2020). Breaking wave height estimation from timex images: Two methods for coastal video monitoring systems. Remote Sensing, 12(2), 204.
9. Bachofer, F., Quénéhervé, G., Zwiener, T., Maerker, M., & Hochschild, V. (2016). Comparative analysis of edge detection techniques for SAR images. European Journal of Remote Sensing, 49(1), 205-224.
10. Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495.
11. Bai, X., & Wang, W. (2014). Saliency-SVM: An automatic approach for image segmentation. Neurocomputing, 136, 243-255.
12. Blockeel, H., Devos, L., Frénay, B., Nanfack, G., & Nijssen, S. (2023). Decision trees: from efficient prediction to responsible AI. Frontiers in Artificial Intelligence, 6.
13. Boak, E. H., & Turner, I. L. (2005). Shoreline definition and detection: a review. Journal of Coastal Research, 21(4), 688-703.
14. Board, O. S., Board, M., & Council, N. R. (2003). Oil in the sea III: inputs, fates, and effects. national academies Press.
15. Bonofiglio, F., De Leo, F. C., Yee, C., Chatzievangelou, D., Aguzzi, J., & Marini, S. (2022). Machine learning applied to big data from marine cabled observatories: A case study of sablefish monitoring in the NE Pacific. Frontiers in Marine Science, 9, 842946.
16. Brocchini, M. (2006). Integral swash-zone models. Continental Shelf Research, 26(5), 653-660. https://doi.org/https://doi.org/10.1016/j.csr.2006.02.002
17. Butt, T., & Russell, P. (1999). Suspended sediment transport mechanisms in high-energy swash. Marine Geology, 161(2), 361-375. https://doi.org/https://doi.org/10.1016/S0025-3227(99)00043-2
18. Canaz, S., Karsli, F., Guneroglu, A., & Dihkan, M. (2015). Automatic boundary extraction of inland water bodies using LiDAR data. Ocean & Coastal Management, 118, 158-166.
19. Castelle, B., McCarroll, R. J., Brander, R. W., Scott, T., & Dubarbier, B. (2016). Modelling the alongshore variability of optimum rip current escape strategies on a multiple rip-channelled beach. Natural Hazards, 81, 663-686.
20. Chang, C.-C., Wang, J.-H., Wu, J.-L., Hsieh, Y.-Z., Wu, T.-D., Cheng, S.-C., Chang, C.-C., Juang, J.-G., Liou, C.-H., & Hsu, T.-H. (2021). Applying artificial intelligence (AI) techniques to implement a practical smart cage aquaculture management system. Journal of Medical and Biological Engineering, 41, 652-658.
21. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2014). Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062.
22. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017a). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.
23. Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017b). Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.
24. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. Proceedings of the European conference on computer vision (ECCV),
25. Chen, R., Jia, B., Ma, L., Xu, J., Li, B., & Wang, H. (2022). Marine Radar Oil Spill Extraction Based on Texture Features and BP Neural Network. Journal of Marine Science and Engineering, 10(12), 1904.
26. Chen, Y., Weng, Q., Tang, L., Zhang, X., Bilal, M., & Li, Q. (2020). Thick clouds removing from multitemporal Landsat images using spatiotemporal neural networks. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14.
27. Cheon, S.-H., & Suh, K.-D. (2016). Effect of sea level rise on nearshore significant waves and coastal structures. Ocean Engineering, 114, 280-289.
28. Choi, J. (2022). Predicting the Frequency of Marine Accidents by Navigators’ Watch Duty Time in South Korea Using LSTM. Applied Sciences, 12(22), 11724.
29. Cohen, W. B., & Goward, S. N. (2004). Landsat's role in ecological applications of remote sensing. Bioscience, 54(6), 535-545.
30. Cracknell, A. (1999). Remote sensing techniques in estuaries and coastal zones an update. International Journal of Remote Sensing, 20(3), 485-496.
31. Cui, Y., Song, Y., Sun, C., Howard, A., & Belongie, S. (2018). Large scale fine-grained categorization and domain-specific transfer learning. Proceedings of the IEEE conference on computer vision and pattern recognition,
32. Deng, L., Chen, Q., He, Y., Sui, X., Liu, Q., & Hu, L. (2019). Fire detection with infrared images using cascaded neural network. Journal of Algorithms & Computational Technology, 13, 1748302619895433.
33. Elfrink, B., & Baldock, T. (2002). Hydrodynamics and sediment transport in the swash zone: a review and perspectives. Coastal Engineering, 45(3-4), 149-167.
34. Flood, M. (1997). Commercial implications of topographic terrain mapping using scanning airborne laser radar. Photogramm. Eng. Remote Sens., 63, 327-366.
35. Gal, Y., Browne, M., & Lane, C. (2011). Automatic estimation of nearshore wave height from video timestacks. 2011 International Conference on Digital Image Computing: Techniques and Applications,
36. Gal, Y., Browne, M., & Lane, C. (2013). Long-term automated monitoring of nearshore wave height from digital video. IEEE Transactions on Geoscience and Remote Sensing, 52(6), 3412-3420.
37. Gallop, S. L., Bryan, K. R., Pitman, S. J., Ranasinghe, R., & Sandwell, D. (2016). Pulsations in surf zone currents on a high energy mesotidal beach in New Zealand. Journal of Coastal Research(75), 378-382.
38. Gallop, S. L., Bryan, K. R., Pitman, S. J., Ranasinghe, R., Sandwell, D. R., & Harrison, S. R. (2018). Rip current circulation and surf zone retention on a double barred beach. Marine Geology, 405, 12-22.
39. Gao, M., Wang, B., Yang, J., & Dong, W. (2018). Are peak summer sultry heat wave days over the Yangtze–Huaihe River basin predictable? Journal of Climate, 31(6), 2185-2196.
40. García-Rubio, G., Huntley, D., & Russell, P. (2015). Evaluating shoreline identification using optical satellite images. Marine Geology, 359, 96-105.
41. Gens, R. (2010). Remote sensing of coastlines: detection, extraction and monitoring. International Journal of Remote Sensing, 31(7), 1819-1836.
42. Ghilani, C. D., & Wolf, P. R. (2010). Elementary surveying. Prentice hall.
43. Ghorbani, Z., & Behzadan, A. H. (2021). Monitoring offshore oil pollution using multi-class convolutional neural networks. Environmental Pollution, 289, 117884.
44. Gonzalez-Rivero, M., Beijbom, O., Rodriguez-Ramirez, A., Bryant, D. E., Ganase, A., Gonzalez-Marrero, Y., Herrera-Reveles, A., Kennedy, E. V., Kim, C. J., & Lopez-Marcano, S. (2020). Monitoring of coral reefs using artificial intelligence: A feasible and cost-effective approach. Remote Sensing, 12(3), 489.
45. Guo, C., Szemenyei, M., Yi, Y., Wang, W., Chen, B., & Fan, C. (2021). Sa-unet: Spatial attention u-net for retinal vessel segmentation. 2020 25th international conference on pattern recognition (ICPR),
46. Guo, Y., Nie, G., Gao, W., & Liao, M. (2023). 2D Semantic Segmentation: Recent Developments and Future Directions. Future Internet, 15(6), 205.
47. Hale, R., & Swearer, S. E. (2016). Ecological traps: current evidence and future directions. Proceedings of the Royal Society B: Biological Sciences, 283(1824), 20152647.
48. Hall, C. M. (2001). Trends in ocean and coastal tourism: the end of the last frontier? Ocean & Coastal Management, 44(9-10), 601-618.
49. Hamm, L., Madsen, P. A., & Peregrine, D. H. (1993). Wave transformation in the nearshore zone: a review. Coastal Engineering, 21(1-3), 5-39.
50. He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
51. He, R., Yang, J., & Qi, X. (2021). Re-distributing biased pseudo labels for semi-supervised semantic segmentation: A baseline investigation. Proceedings of the IEEE/CVF International Conference on Computer Vision,
52. Holland, K. T., Puleo, J. A., & Kooney, T. N. (2001). Quantification of swash flows using video-based particle image velocimetry. Coastal Engineering, 44(2), 65-77. https://doi.org/https://doi.org/10.1016/S0378-3839(01)00022-9
53. Horstmann, J., Bödewadt, J., Carrasco, R., Cysewski, M., Seemann, J., & Streβer, M. (2021). A coherent on receive X-band marine radar for ocean observations. Sensors, 21(23), 7828.
54. Hożyń, S., & Zalewski, J. (2020). Shoreline detection and land segmentation for autonomous surface vehicle navigation with the use of an optical system. Sensors, 20(10), 2799.
55. Hughes, M. G., & Baldock, T. E. (2004). Eulerian flow velocities in the swash zone: field data and model predictions. Journal of Geophysical Research: Oceans, 109(C8).
56. Hughes, M. G., Masselink, G., & Brander, R. W. (1997). Flow velocity and sediment transport in the swash zone of a steep beach. Marine Geology, 138(1), 91-103. https://doi.org/https://doi.org/10.1016/S0025-3227(97)00014-5
57. Hung, W.-L., Chang, Y.-C., & Lee, E. S. (2011). Weight selection in WK-means algorithm with an application in color image segmentation. Computers & Mathematics with Applications, 62(2), 668-676.
58. Isa, N. A. M., Salamah, S. A., & Ngah, U. K. (2009). Adaptive fuzzy moving K-means clustering algorithm for image segmentation. IEEE Transactions on Consumer Electronics, 55(4), 2145-2153.
59. Jung, S., Kim, Y. J., Park, S., & Im, J. (2020). Prediction of sea surface temperature and detection of ocean heat wave in the South Sea of Korea using time-series deep-learning approaches. Korean Journal of Remote Sensing, 36(5_3), 1077-1093.
60. Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., & Kalantidis, Y. (2019). Decoupling representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217.
61. Kim, J., Kim, J., Kim, T., Huh, D., & Caires, S. (2020). Wave-tracking in the surf zone using coastal video imagery with deep neural networks. Atmosphere, 11(3), 304.
62. Koltchinskii, V., & Panchenko, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. The Annals of Statistics, 30(1), 1-50.
63. Kopecky, K. L., Pavoni, G., Nocerino, E., Brooks, A. J., Corsini, M., Menna, F., Gallagher, J. P., Capra, A., Castagnetti, C., & Rossi, P. (2023). Quantifying the Loss of Coral from a Bleaching Event Using Underwater Photogrammetry and AI-Assisted Image Segmentation. Remote Sensing, 15(16), 4077.
64. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the Ieee, 86(11), 2278-2324.
65. Lei, F., Liu, X., Dai, Q., & Ling, B. W.-K. (2020). Shallow convolutional neural network for image classification. SN Applied Sciences, 2(1), 97.
66. Li, F., Peng, J., & Zheng, X. (2004). Object-based and semantic image segmentation using MRF. EURASIP Journal on Advances in Signal Processing, 2004, 1-8.
67. Li, R., Liu, W., Yang, L., Sun, S., Hu, W., Zhang, F., & Li, W. (2018). DeepUNet: A deep fully convolutional network for pixel-level sea-land segmentation. IEEE journal of selected topics in applied earth observations and remote sensing, 11(11), 3954-3962.
68. Liao, Y.-H., & Juang, J.-G. (2022). Real-time UAV trash monitoring system. Applied Sciences, 12(4), 1838.
69. Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. Proceedings of the IEEE international conference on computer vision,
70. Lippmann, T. C., & Holman, R. A. (1989). Quantification of sand bar morphology: A video technique based on wave dissipation. Journal of Geophysical Research: Oceans, 94(C1), 995-1011.
71. Liu, B., Li, H., Kang, H., Hua, G., & Vasconcelos, N. (2021). Gistnet: a geometric structure transfer network for long-tailed recognition. Proceedings of the IEEE/CVF international conference on computer vision,
72. Liu, J., Yu, X., Chen, X., Du, J., & Zhang, F. (2021). Utility of radium quartet for evaluating porewater-derived carbon to a saltmarsh nearshore water: implications for blue carbon export. Science of the Total Environment, 764, 144238.
73. MacMahan, J. H., Thornton, E. B., & Reniers, A. J. (2006). Rip current review. Coastal Engineering, 53(2-3), 191-208.
74. Mandal, A., & Ghosh, A. R. (2023). Role of artificial intelligence (AI) in fish growth and health status monitoring: A review on sustainable aquaculture. Aquaculture International, 1-30.
75. Marmorino, G. O., Smith, G. B., & Miller, W. D. (2013). Infrared remote sensing of surf-zone eddies. IEEE journal of selected topics in applied earth observations and remote sensing, 6(3), 1710-1718.
76. Masselink, G., & Hughes, M. (1998). Field investigation of sediment transport in the swash zone. Continental Shelf Research, 18(10), 1179-1199. https://doi.org/https://doi.org/10.1016/S0278-4343(98)00027-2
77. Masselink, G., & Puleo, J. A. (2006). Swash-zone morphodynamics. Continental Shelf Research, 26(5), 661-680. https://doi.org/https://doi.org/10.1016/j.csr.2006.01.015
78. Menon, A. K., Jayasumana, S., Rawat, A. S., Jain, H., Veit, A., & Kumar, S. (2020). Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314.
79. Miller, M. L., & Auyong, J. (1991). Coastal zone tourism: A potent force affecting environment and society. Marine Policy, 15(2), 75-99.
80. Mitra, P., Shankar, B. U., & Pal, S. K. (2004). Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recognition Letters, 25(9), 1067-1074.
81. Moore, L. J. (2000). Shoreline mapping techniques. Journal of Coastal Research, 111-124.
82. Morton, R. A., Leach, M. P., Paine, J. G., & Cardoza, M. A. (1993). Monitoring beach changes using GPS surveying techniques. Journal of Coastal Research, 702-720.
83. Morton, R. A., & Speed, F. M. (1998). Evaluation of shorelines and legal boundaries controlled by water levels on sandy beaches. Journal of Coastal Research, 1373-1384.
84. Papageorgiou, M. (2016). Coastal and marine tourism: A challenging factor in Marine Spatial Planning. Ocean & Coastal Management, 129, 44-48.
85. Park, S., Lim, J., Jeon, Y., & Choi, J. Y. (2021). Influence-balanced loss for imbalanced visual classification. Proceedings of the IEEE/CVF international conference on computer vision,
86. Pitman, S., Gallop, S. L., Haigh, I. D., Masselink, G., & Ranasinghe, R. (2016). Wave breaking patterns control rip current flow regimes and surfzone retention. Marine Geology, 382, 176-190.
87. Puleo, J. A., Farquharson, G., Frasier, S. J., & Holland, K. T. (2003b). Comparison of optical and radar measurements of surf and swash zone velocity fields. Journal of Geophysical Research: Oceans, 108(C3).
88. Puleo, J. A., & Holland, K. T. (2001). Estimating swash zone friction coefficients on a sandy beach. Coastal Engineering, 43(1), 25-40. https://doi.org/https://doi.org/10.1016/S0378-3839(01)00004-7
89. Puleo, J. A., Holland, K. T., Plant, N. G., Slinn, D. N., & Hanes, D. M. (2003a). Fluid acceleration effects on suspended sediment transport in the swash zone [Article]. Journal of Geophysical Research: Oceans, 108(11), 14-11. https://doi.org/10.1029/2003jc001943
90. Rodríguez, J. F., Macías, J., Castro, M. J., de la Asunción, M., & Sánchez-Linares, C. (2022). Use of neural networks for tsunami maximum height and arrival time predictions. GeoHazards, 3(2), 323-344.
91. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18,
92. Rosenberg, C., Hebert, M., & Schneiderman, H. (2005). Semi-supervised self-training of object detection models.
93. Ruggiero, P., Holman, R. A., & Beach, R. (2004). Wave run‐up on a high‐energy dissipative beach. Journal of Geophysical Research: Oceans, 109(C6).
94. Schwendeman, M. S., & Thomson, J. (2017). Sharp-crested breaking surface waves observed from a ship-based stereo video system. Journal of Physical Oceanography, 47(4), 775-792.
95. Scott, T., Austin, M., Masselink, G., & Russell, P. (2016). Dynamics of rip currents associated with groynes—field measurements, modelling and implications for beach safety. Coastal Engineering, 107, 53-69.
96. Shahriari, B., Swersky, K., Wang, Z. Y., Adams, R. P., & de Freitas, N. (2016). Taking the Human Out of the Loop: A Review of Bayesian Optimization [Review]. Proceedings of the Ieee, 104(1), 148-175. https://doi.org/10.1109/jproc.2015.2494218
97. Shanks, A. L., Morgan, S. G., MacMahan, J., & Reniers, A. J. (2010). Surf zone physical and morphological regime as determinants of temporal and spatial variation in larval recruitment. Journal of Experimental Marine Biology and Ecology, 392(1-2), 140-150.
98. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of big data, 6(1), 1-48.
99. Siddique, N., Paheding, S., Elkin, C. P., & Devabhaktuni, V. (2021). U-net and its variants for medical image segmentation: A review of theory and applications. Ieee Access, 9, 82031-82057.
100. Simarro, G., Bryan, K. R., Guedes, R. M., Sancho, A., Guillen, J., & Coco, G. (2015). On the use of variance images for runup and shoreline detection. Coastal Engineering, 99, 136-147.
101. Simecek-Beatty, D., & Lehr, W. J. (2017). Extended oil spill spreading with Langmuir circulation. Marine pollution bulletin, 122(1-2), 226-235.
102. Singh, A., Kalke, H., Loewen, M., & Ray, N. (2020). River ice segmentation with deep learning. IEEE Transactions on Geoscience and Remote Sensing, 58(11), 7570-7579.
103. Smith, K. E., Terrano, J. F., Pitchford, J. L., & Archer, M. J. (2021). Coastal wetland shoreline change monitoring: A comparison of shorelines from high-resolution WorldView Satellite imagery, aerial Imagery, and field surveys. Remote Sensing, 13(15), 3030.
104. Song, T., Pang, C., Hou, B., Xu, G., Xue, J., Sun, H., & Meng, F. (2023). A review of artificial intelligence in marine science. Frontiers in Earth Science, 11, 1090185.
105. Stockdonf, H. F., Sallenger Jr, A. H., List, J. H., & Holman, R. A. (2002). Estimation of shoreline position and change using airborne topographic lidar data. Journal of Coastal Research, 502-513.
106. Stringari, C. E., Harris, D., & Power, H. (2019). A novel machine learning algorithm for tracking remotely sensed waves in the surf zone. Coastal Engineering, 147, 149-158.
107. Svendsen, I. A. (2005). Introduction to nearshore hydrodynamics (Vol. 24). World Scientific Publishing Company.
108. Svendsen, I. A., & Putrevu, U. (1996). Surf-zone hydrodynamics. In Advances in coastal and ocean engineering (pp. 1-78). World Scientific.
109. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A survey on deep transfer learning. Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27,
110. Tang, W., Zhao, B., Tang, L., & Nan, J. (2019). Hierarchical ship detection method for space‐borne SAR image. The Journal of Engineering, 2019(21), 7662-7666.
111. Thornton, E. B., MacMahan, J., & Sallenger, A. H. (2007). Rip currents, mega-cusps, and eroding dunes. Marine Geology, 240(1), 151-167. https://doi.org/https://doi.org/10.1016/j.margeo.2007.02.018
112. Tian, J., Liu, Y.-C., Glaser, N., Hsu, Y.-C., & Kira, Z. (2020). Posterior re-calibration for imbalanced datasets. Advances in neural information processing systems, 33, 8101-8113.
113. Toure, S., Diop, O., Kpalma, K., & Maiga, A. S. (2019). Shoreline detection using optical remote sensing: A review. ISPRS International Journal of Geo-Information, 8(2), 75.
114. Trebing, K., Staǹczyk, T., & Mehrkanoon, S. (2021). SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture. Pattern Recognition Letters, 145, 178-186.
115. Uunk, L., Wijnberg, K., & Morelissen, R. (2010). Automated mapping of the intertidal beach bathymetry from video images. Coastal Engineering, 57(4), 461-469.
116. Voulgaris, G., & Collins, M. (2000). Sediment resuspension on beaches: response to breaking waves. Marine Geology, 167(1-2), 167-187.
117. Vousdoukas, M. I., Wziatek, D., & Almeida, L. P. (2012). Coastal vulnerability assessment based on video wave run-up observations at a mesotidal, steep-sloped beach. Ocean Dynamics, 62, 123-137.
118. Wang, J., Wang, L., Feng, S., Peng, B., Huang, L., Fatholahi, S. N., Tang, L., & Li, J. (2023a). An overview of shoreline mapping by using airborne LiDAR. Remote Sensing, 15(1), 253.
119. Wang, Y., Imai, K., Miyashita, T., Ariyoshi, K., Takahashi, N., & Satake, K. (2023b). Coastal tsunami prediction in Tohoku region, Japan, based on S-net observations using artificial neural network. Earth, Planets and Space, 75(1), 154.
120. Wang, Z., Jiang, K., Yi, P., Han, Z., & He, Z. (2020). Ultra-dense GAN for satellite imagery super-resolution. Neurocomputing, 398, 328-337.
121. Ward, D., Melbourne-Thomas, J., Pecl, G. T., Evans, K., Green, M., McCormack, P. C., Novaglio, C., Trebilco, R., Bax, N., & Brasier, M. J. (2022). Safeguarding marine life: conservation of biodiversity and ecosystems. Reviews in fish biology and fisheries, 32(1), 65-100.
122. Wen, Y., Huang, Y., Zhou, C., Yang, J., Xiao, C., & Wu, X. (2015). Modelling of marine traffic flow complexity. Ocean Engineering, 104, 500-510.
123. Wigand, C., Ardito, T., Chaffee, C., Ferguson, W., Paton, S., Raposa, K., Vandemoer, C., & Watson, E. (2017). A climate change adaptation strategy for management of coastal marsh systems. Estuaries and Coasts, 40, 682-693.
124. Wu, L., Tajima, Y., Yamanaka, Y., Shimozono, T., & Sato, S. (2019). Study on characteristics of SAR imagery around the coast for shoreline detection. Coastal Engineering Journal, 61(2), 152-170.
125. Wu, Y., & Song, K. (2021). Source, treatment, and disposal of aquaculture solid waste: a review. Journal of Environmental Engineering, 147(3), 03120012.
126. Xiang, L., Ding, G., & Han, J. (2020). Learning from multiple experts: Self-paced knowledge distillation for long-tailed classification. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16,
127. Xu, G., Cheng, C., Yang, W., Xie, W., Kong, L., Hang, R., Ma, F., Dong, C., & Yang, J. (2019). Oceanic eddy identification using an AI scheme. Remote Sensing, 11(11), 1349.
128. Yin, C., Anh, D. T., Mai, S. T., Le, A., Nguyen, V.-H., Nguyen, V.-C., Tinh, N. X., Tanaka, H., Viet, N. T., & Nguyen, L. D. (2021). Advanced machine learning techniques for predicting nha trang shorelines. Ieee Access, 9, 98132-98149.
129. Yin, Y., Guo, Y., Deng, L., & Chai, B. (2023). Improved PSPNet-based water shoreline detection in complex inland river scenarios. Complex & Intelligent Systems, 9(1), 233-245.
130. Yuan, Y., Huang, L., Guo, J., Zhang, C., Chen, X., & Wang, J. (2021). OCNet: Object context for semantic segmentation. International Journal of Computer Vision, 129(8), 2375-2398.
131. Zhang, Y., Kang, B., Hooi, B., Yan, S., & Feng, J. (2023). Deep long-tailed learning: A survey. IEEE transactions on pattern analysis and machine intelligence.
132. Zhang, Y., Zhao, P., Niu, S., Wu, Q., Cao, J., Huang, J., & Tan, M. (2019). Online adaptive asymmetric active learning with limited budgets. IEEE Transactions on Knowledge and Data Engineering, 33(6), 2680-2692.
133. Zhou, B., Cui, Q., Wei, X.-S., & Chen, Z.-M. (2020). Bbn: Bilateral-branch network with cumulative learning for long-tailed visual recognition. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
134. Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., & Liang, J. (2018). Unet++: A nested u-net architecture for medical image segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4,
135. Zhu, Z., Woodcock, C. E., Rogan, J., & Kellndorfer, J. (2012). Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sensing of Environment, 117, 72-82.
校內:2029-07-17公開