簡易檢索 / 詳目顯示

研究生: 黃仲安
Huang, Chung-An
論文名稱: 廢曬鹽田水位調控對改善候鳥棲息地之研究以布袋十區鹽田為例
Habitat-oriented water level manipulation at 10th Budai Salt Pan Wetland in Taiwan
指導教授: 王筱雯
Wang, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 141
中文關鍵詞: 地文性淹排水模式水位調控布袋鹽田濕地水門操作
外文關鍵詞: Wetland, Water level regulation, PhD, Habitat Improvement
相關次數: 點閱:67下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 布袋廢曬鹽田濕地位於嘉義西南沿海地區,原屬於鹽業用地。2001年曬鹽產業正式走入歷史,鹽田因其地理條件,成為許多野生動物的重要棲地。在經過調查、訪問與資料收集後瞭解,十區鹽田周圍水門與抽水機在養殖漁業的操作下,使1、2月水體狀態對候鳥的使用並不友善;三、四月鹽田內水位上升,使部分東方環頸鴴巢位淹沒,此狀況顯示十區鹽田對於改善候鳥棲地的生態水位調控有一定程度的需求。
    在高程測量與數值模式的限制下本研究將研究區域限縮在十區鹽田台61縣道以西區域。分析此區域的鳥類調查資料後,將東方環頸鴴與黑面琵鷺設為目標鳥種,並定義目標鳥種的偏好使用水深區間。之後使用地文性淹排水模式以目前養殖水位調控為基礎來模擬引水與抽水操作。以結果探討布袋十區鹽田現況與各工程情境下東方環頸鴴與黑面琵鷺的最佳水深分布和防止東方環頸鴴巢位淹沒的警戒水位,另外也會以模擬結果檢視工程情境之棲地改善功效。
    以十區鹽田現況而言,東方環頸鴴與黑面琵鷺的最佳水深分布出現在點位10-3水深15至17公分。考量養殖引水操作,將東方環頸鴴巢位保護10-3警戒水深設為30公分;東方環頸鴴巢位保護工程情境,是用高程增高的方式使歷史築巢區不易被水淹沒,其模擬結果顯示,最佳水深分布的10-3水深與十區現況相同。巢位保護10-3警戒水深增加至40公分,但負面效果是會犧牲掉原本能夠形成目標鳥種偏好水深之區域;引水效率增加工程情境,以疏通渠道解決引水時的迴水現象,其模擬結果顯示出有一定程度的減緩迴水程度能力,但其他結果皆與十區鹽田現況相同;最後將前述兩種工程一起執行的情境,這樣的情境設定,可同時保有巢位保護與降低迴水程度的功能。

    Budai salt pan wetlands are located in the coastal area of Chiayi County in Southwestrern Taiwan. In 2001, the salt industry officially entered history and the salt pans have become an important habitat for many wild animals due to its geographical conditions. After investigation, interview and data collection, we understand that the aquaculture operation of water gates and pumping machines around the 10th Budai salt pan has made the water bodies unfriendly to migratory birds in January and February, and in March and April, the water level has risen significantly, causing some nesting places of the Charadrius alexandrinus to be flooded. This situation shows that this area has a certain degree of demand for ecological water level regulation to improve the habitat of migratory birds.
    Under the limitation of elevation measurement and numerical model, the study area was limited to the area west of County Road 61 in 10th Budai salt pan. After analyzing the bird survey data in this area, the Charadrius alexandrinus and Black-faced Spoonbill were set as the target bird species. To improve the habitat environment of the target bird species. Based on the current aquaculture water level regulation, PhD model were used to investigate the best water depth distribution of the target bird species, to identify the warning water depths that can protect nesting sites, and to check the effectiveness of habitat improvement in the engineering situations.
    According to the results, the best water depth distribution for the target species occurs at 15 to 17 cm at point 10-3. It is proposed to set the warning water depth of nesting site point 10-3 at 30 cm, and it can be increased to 40 cm by adding the nesting site protection situation. The engineering situitation for setting channel can reduce the area of water depth above 30 cm by about 18,491 m2. The results of this study provide specific recommendations for habitat improvement and ecological water level regulation for migratory birds in the 10th Budai salt pan wetland.

    中文摘要 I 英文摘要 II 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3論文架構 3 第二章 文獻回顧 5 2.1 濕地定義 5 2.2 水利設施操作對棲地的影響 5 2.3 對目標水鳥偏好使用水深範圍之定義 6 2.4 地文性淹排水模式應用 7 2.5 小結 8 第三章 研究材料與方法 10 3.1研究區域 10 3.1.1地文概述 11 3.1.2水文概述 13 3.1.3鳥類調查 15 3.1.4目標鳥種棲地評估指標 17 3.2現地調查與訪談 18 3.2.1水利設施與排水系統 18 3.2.2十區鹽田水深調查 20 3.2.3 WG1外水位調查 21 3.2.4 十區鹽田台61縣道以西區域高程調查 22 3.3 引水試驗 25 3.4地文性淹排水模式 27 3.4.1 網格設置 28 3.4.2 水理演算 28 3.4.3 邊界條件 32 3.4.4 模式驗證方法 32 3.5情境設計 33 3.5.1 情境一:十區現況 36 3.5.2 情境二:東方環頸鴴巢位保護工程 37 3.5.3 情境三:引水效率增加工程 38 3.5.4 情境四:東方環頸鴴巢位保護和引水效率增加工程 39 第四章 結果與討論 40 4.1現地調查與訪談結果 40 4.1.1十區鹽田水門用水操作 40 4.1.2第一次水門操作結果 44 4.1.3第二次水門操作結果 47 4.1.4小節 49 4.2 模式設置與驗證結果 50 4.2.1 網格繪製 51 4.2.2 引水模式驗證 52 4.2.3 抽水模式測試 57 4.2.4小結 58 4.3 各情境模擬結果與討論 58 4.3.1情境一:十區現況 59 4.3.2情境二:東方環頸鴴巢位保護工程 76 4.3.3情境三:引水效率增加工程 93 4.3.4情境四:東方環頸鴴巢位保護和引水效率增加工程 111 4.3.5 小結 130 第五章 結論與建議 134 5.1 結論 134 5.2 建議 136 參考文獻 138

    1. Alves, A., Gersonius, B., Sanchez, A., Vojinovic, Z., & Kapelan, Z. (2018). Multi-criteria approach for selection of green and grey infrastructure to reduce flood risk and increase CO-benefits. Water Resources Management, 32(7), 2505-2522.
    2. Baker, M. C. (1979). Morphological correlates of habitat selection in a community of shorebirds (Charadriiformes). Oikos, 121-126.
    3. Bancroft, G. T., Gawlik, D. E., & Rutchey, K. (2002). Distribution of wading birds relative to vegetation and water depths in the northern Everglades of Florida, USA. Waterbirds, 25(3), 265-277.
    4. Boertmann, D., & Riget, F. (2006). Effects of changing water levels on numbers of staging dabbling ducks in a Danish wetland. Waterbirds, 29(1), 1-8.
    5. De Wrachien, D., Mambretti, S., & Schultz, B. (2011). Flood management and risk assessment in flood‐prone areas: Measures and solutions. Irrigation and Drainage, 60(2), 229-240.
    6. Desgranges, J.-L., Ingram, J., Drolet, B., Morin, J., Savage, C., & Borcard, D. (2006). Modelling wetland bird response to water level changes in the Lake Ontario–St. Lawrence River hydrosystem. Environmental monitoring and assessment, 113(1), 329-365.
    7. Faragó, S., & Hangya, K. (2012). Effects of water level on waterbird abundance and diversity along the middle section of the Danube River. Hydrobiologia, 697(1), 15-21.
    8. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., . . . Gibbs, H. K. (2005). Global consequences of land use. science, 309(5734), 570-574.
    9. Holm, T. E., & Clausen, P. (2006). Effects of water level management on autumn staging waterbird and macrophyte diversity in three Danish coastal lagoons. Biodiversity & Conservation, 15(14), 4399-4423.
    10. Isola, C., Colwell, M., Taft, O., & Safran, R. (2000). Interspecific differences in habitat use of shorebirds and waterfowl foraging in managed wetlands of California's San Joaquin Valley. Waterbirds, 196-203.
    11. Krapu, G. L., Klett, A. T., & Jorde, D. G. (1983). The effect of variable spring water conditions on mallard reproduction. The Auk, 100(3), 689-698.
    12. Kuo, P. H., & Wang, H. W. (2018). Water management to enhance ecosystem services in a coastal wetland in Taiwan. Irrigation and Drainage, 67, 130-139.
    13. Ma, Z., Cai, Y., Li, B., & Chen, J. (2010). Managing wetland habitats for waterbirds: an international perspective. Wetlands, 30(1), 15-27.
    14. Ma, Z., Cai, Y., Li, B., & Chen, J. (2010). Managing wetland habitats for waterbirds: an international perspective. Wetlands, 30(1), 15-27.
    15. Mamoon, A. A., & Rahman, A. (2017). Selection of the best fit probability distribution in rainfall frequency analysis for Qatar. Natural hazards, 86(1), 281-296.
    16. Myers, W. D., & Swiatecki, W. (1969). Average nuclear properties. Annals of Physics, 55(3), 395-505.
    17. Ntiamoa‐Baidu, Y., Piersma, T., Wiersma, P., Poot, M., Battley, P., & Gordon, C. (1998). Water depth selection, daily feeding routines and diets of waterbirds in coastal lagoons in Ghana. Ibis, 140(1), 89-103.
    18. Nudds, T. D., & Bowlby, J. N. (1984). Predator–prey size relationships in North American dabbling ducks. Canadian journal of zoology, 62(10), 2002-2008.
    19. Paracuellos, M. (2006). How can habitat selection affect the use of a wetland complex by waterbirds? Biodiversity & Conservation, 15(14), 4569-4582.
    20. Safran, R. J., Colwell, M. A., Isola, C. R., & Taft, O. E. (2000). Foraging site selection by nonbreeding White-faced Ibis. The Condor, 102(1), 211-215.
    21. Safran, R. J., Isola, C. R., Colwell, M. A., & Williams, O. E. (1997). Benthic invertebrates at foraging locations of nine waterbird species in managed wetlands of the northern San Joaquin Valley, California. Wetlands, 17(3), 407-415.
    22. Schroeder, L. D., Anderson, D. R., Pospahala, R. S., Robinson, G. G., & Glover, F. A. (1976). Effects of early water application on waterfowl production. The Journal of Wildlife Management, 227-232.
    23. Son, A.-L., Kim, B., & Han, K.-Y. (2016). A simple and robust method for simultaneous consideration of overland and underground space in urban flood modeling. Water, 8(11), 494.
    24. Wang, H.-W., Kuo, P.-H., & Dodd, A. E. (2020). Gate operation for habitat-oriented water management at Budai Salt Pan Wetland in Taiwan. Ecological Engineering, 148, 105761.
    25. 內政部營建署(2016)。濕地保育法。內政部營建署。
    26. 王筱雯(2017)。布袋廢棄鹽田水文生態環境永續管理及明智利用計畫。國立成功大學。
    27. 李培芬、吳采諭、柯智仁(2008)。以鳥類作為生態指標-鳥類監測計畫簡介。全球變遷通訊雜誌。(60), 25-35.。
    28. 社團法人中華民國野鳥學會、東海大學(2019)。嘉義布袋鹽灘地基礎調查。社團法人中華民國野鳥學會、東海大學。
    29. 嘉義縣政府新聞行銷處(2007)。嘉義縣治水對策。取自https://www.cyhg.gov.tw/News_Content.aspx?n=20C1A3DAF6A74FCE&sms=CA3FB4291106E1D9&s=4C667F6C7BED895E。
    30. 郭品含(2015)。考量濕地生態系統服務之水環境管理-以布袋鹽田濕地為例。國立成功大學水利及海洋工程學系博士論文,台南市。取自https://hdl.handle.net/11296/rc6x53。
    31. 巫孟璇(2013)。地文性淹水即時預報模式之發展與應用。國立成功大學水利及海洋工程學系碩博士班博士論文,台南市。取自https://hdl.handle.net/11296/2g2t5a
    32. 郭品含(2015)。考量濕地生態系統服務之水環境管理-以布袋鹽田濕地為例。國立成功大學水利及海洋工程學系博士論文,台南市。取自https://hdl.handle.net/11296/rc6x53
    33. 廖彥翔(2019)。七股鹽田濕地水門操作策略之研究。國立成功大學水利及海洋工程學系碩士論文,台南市。取自https://hdl.handle.net/11296/qw6ng6
    34. 林國凱(2021)。應用水門操作與工程手段於七股鹽田濕地環境管理策略。國立成功大學水利及海洋工程學系碩士論文,台南市。取自https://hdl.handle.net/11296/rpcq2b
    35. 張家誌(2021)。應用地文性淹排水模式提升鹽田濕地之棲地品質-以七股鹽田濕地為例。國立成功大學水利及海洋工程學系碩士論文,台南市。取自https://hdl.handle.net/11296/2thssp

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE