簡易檢索 / 詳目顯示

研究生: 陳耀忠
Chen, Yao-Chung
論文名稱: 微波介電共振器及微波介電濾波器之研究
Study of Microwave Dielectric Resonators and Filters
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 115
中文關鍵詞: 共振器濾波器微波介電
外文關鍵詞: filter, microwave dielectric, resonator
相關次數: 點閱:60下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微波介電共振器,具有高介電常數,低溫度飄移係數及高品質因數等特性,極適合應用於微波類比電路元件。本論文主要在於研發應用於微波類比電路中之共振器及濾波器,並將論文分成兩大研究方向:
    一、 微波介電陶瓷之研發及備製:
    (a) 利用CuO, ZnO 和V2O5 等不同的參雜物質來達到液相燒結的效果,並達到降低ReAlO3燒結溫度的目的。SmAlO3 和 NdAlO3 兩組材料系統經過添加燒結促進劑後可將燒結溫度從1650℃ 降到1410℃~1430℃。SmAlO3 再添加0.25 wt/% CuO 且燒結溫度微1430℃ 時,Q×f 可達到 51000 GHz。在加入0.25 wt/%ZnO且燒結溫度微1430℃ 時Q×f 可達到41000 GHz。ReAlO3系統在添加促進劑後其介電常數為19.6~22.5。頻率飄移係數為 -30 ~ -65 ppm/℃。
    (b) 利用tungsten-bronze-type structure此種微架構之結構式,來研究、改良和探討 Ba2-xSm4+2x/3Ti8+yO24+2y材料系統之微波特性。當y 值固定為 1,x 值為 0.0~0.3時,其Q×f 值為9000~11000,介電常數值為75~80,頻率飄移係數為 ~0ppm/℃。當x值固定為 0.1,y = 0~2時,BST 系統之Q×f 值為 8500~13000,介電常數值為63~85,頻率飄移係數為-12 ~17 ppm/℃。
    二、 微波介電陶瓷濾波器之設計及製作:
    (a)本研究以BST 材料系統為原始材料,設計、分析並研製了適用於UHF和L頻帶的同軸型介電濾波器,其中包含了前段設計的基本考量,中段製程觀念、和後段的成型及測試。

    Due to the development in mobile communication, mobile telephone systems, as well as in satellite broadcasting systems was rapidly, how to design the high-quality devices applied in analog circuit is the most important homework. There are two primary branches in this research. One part is to develop the dielectric ceramic systems that exhibit great dielectric properties. The other part is to design and realize the coaxial-type dielectric filters.

    1.Study and fabrications of microwave dielectric resonators
    (a) The effect of CuO, ZnO and V2O5 additions to ReAlO3 (Re=Sm and Nd) were investigated. The sintering temperatures of ReAlO3 ceramics can be effectively reduced from 1650℃ to 1410~1430℃ due to the liquid-phase sintering effect. At low concentration levels (0.25-0.5 wt%), the ReAlO3 ceramics remained in the single phase and presented second phase Sm4Al2O9 and Nd4Al2O9 on SmAlO3 and NdAlO3, respectively with concentrations over 0.5 wt%. The Q×f values of 51000 and 41000 GHz was obtained at 1430℃ for 0.25 wt% CuO and ZnO-sintered SmAlO3 ceramics. The Q×f value of 63000 GHz was achieved at 1410~1430℃for 0.25 wt% CuO-sintered NdAlO3. The relative dielectric constant of ReAlO3 remains in the range from 19.6 to 22.5. The temperature coefficient of ReAlO3 ceramics depends on the additions and ranges from –30 to -65 ppm/℃.
    (b) The microwave dielectric properties and microstructure of Ba2-xSm4+2x/3Ti8+yO24+2y were investigated. The typical dielectric performances of εr = 68 to 79 and Q×f = 11000 to 12500GHz were obtained in well-sintered Ba2-xSm4+2x/3Ti9O26 ceramics. The τf values of Ba2-xSm4+2x/3Ti9O26 ceramics was adjusted from negative (-3ppm/℃ for x = 0) to positive ( + 6ppm/℃ for x = 0.3). The Ba2-xSm4+2x/3Ti8+yO24+2y ceramics with x = 0.1~0.3 and y = 0~2 formed the complete solid solution and were obtained in this reach. The typical dielectric performances of εr = 63 to 85 and Q×f = 8500 to 13000GHz were obtained. The τf values of the BST ceramics can be adjusted from a negative –12 ppm/℃ value to a positive value 17 ppm/℃ as y increases from 0 to 2. Second phases Ba2Ti9O2 and TiO2 appeared during sintering procedures and were identified. Not only dielectric constant, but also Q×f values are dependent on the densification of BST ceramics.
    2. Design and construction of microwave ceramics dielectric filters
    Microwave dielectric properties of Ba(2-x)Sm(4+2x/3)Ti9O26 system (BST)(0.0≦x≦0.3 ) and design procedures of microwave coaxial dielectric bandpass filter have been investigated in this work. Dielectric coaxial resonators with excellent dielectric properties of εr =75~80, Q×f value =11000 and great temperature stability at the resonant frequency. ( = ~ 0 ppm/℃)were used. Microwave badnpass filters for mobile communication system were constructed by using such coaxial resonators. Both air-gap coupling and direct coupling methods were applied as the coupling instruments in the transformation of electromagnetic energy. Comb-line theory was used to adjust the response of filters. The resonant frequency of each resonator, coupling coefficients between adjacent resonators, and external quality factor were adjusted to achieve the target specifications. The measured responses were in excellent agreement with the expected results.

    Chapter 1 Introduction ……………….. 1 Chapter 2 Theory of Dielectric Resonator and Microwave Filters….5 2-1 Theory of Microwave Dielectric Properties …………………….5 2-2 Analysis of Dielectric Resonator ………………………8 2-3 Measurement of Microwave Dielectric Properties ……………11 2-4 Basic Theory of Microwave Filters ………….13 Chapter 3 Liquid Phase Sintering and Microwave Dielectric Properties of ReAlO3 (Re=Sm, Nd) Ceramics …….17 3-1 Introduction ……………17 3-2 Experimental Procedures …………..18 3-2-1 Sample preparations …………….18 3-2-2Characteristics Analysis and Measurement of Microwave Dielectric Properties19 3-3 Results and Discussions ……………20 3-3-1 Microstructure of SmA lO3 Ceramics ……20 3-3-2 Microstructure of NdAlO3 Ceramics ………22 3-3-3 Densification of SmAlO3 Ceramics …………24 3-3-4 Densification of NdAlO3 Ceramics ………………..25 3-3-5 Dielectric Properties of SmALO3 Ceramics …………………26 3-3-6 Dielectric Properties of NdAlO3 Ceramics …………………..28 3-4 Conclusion …………………..31 Chapter 4 Microstructure and Microwave Dielectric Properties of Ba2-xSm4+2/3xTi24+2yO8+y Ceramics ……..32 4-1 Introduction ……32 4-2 Structural Formula of Tungsten-Bronze-Structure ……….34 4-3 Experimental Procedure …………35 4-3-1 Sample preparations ……………….35 4-3-2 Characteristic Analysis ………………….36 4-4 Results and Discussion ……………………..37 4-4-1 Microstructure of Ba2-xSm4+2/3xTi24+2yO8+y ceramics ……….38 4-4-2 Densification of Ba2-xSm4+2/3xTi24+2yO8+ y ceramics …43 4-4-3 Microwave Dielectric Properties of Ba2-xSm4+2/3xTi24+2yO8+y ceramics ……43 4-5 Conclusions …..47 Chapter 5 Design and Fabrication of Microwave Bandpass ….49 5-1 Filter ……….49 5-2 Introduction ……………….50 5-3 Fabrication of Coaxial Dielectric Resonators ……………….52 5-4 Coupling Analyses ……………54 5-5 Design and Construction of Filter Fabrication and Performance of Experiment Filter .57 Chapter 6 Conclusions and Future Work ………………59 6-1 Conclusions ……………………59 6-2 Future Work ………………….61 Reference ……………63

    [1] W. D. Kingery, H. K. Bowen And D.R. Uhlmann, “Introduction to Ceramics,” 2nd Edn (J. Wiley, New York, 1976) p. 461
    [2] Kajfez and P. Guillon:Dielectric Resonators (Artech House, Massachusetts, 1986) p. 345.
    [3] L. Chai, M. A. Akbas, P. K. Davies and J. B. Parise, “Cation Ordering Transformation in Ba(Mg1/3Ta2/3)O3-BaZrO3 Perovskite Solid Solution,” Mat Res. Bull, 33(9) (1998) 1261-69.
    [4] M. Furuya and A. Ochi, “Microwave Dielectric Properties for Ba(Mg1/3Ta2/3)O3-
    A(Mg1/2W1/2)O3 (A=Ba, Sr, and Ca)Ceramics,” Jpn. J. Appl. Phys., 33 (1994) 5482-87
    [5] V. M. Ferreir, F. Azough, I. L. Baptisa and R. Freer, “Magnesium Titanate Microwave Dielectric Ceramics,” Ferroelectrics, 133 (1992) 127-132.
    [6] W. Y. Lin and R.F. Spreyer, “Dielectric Properties of Microstructure-Controlled Ba2Ti9O20 Resonators,” J. Am. Ceram. Soc., 82〔2〕325-30(1999).
    [7] B. W. Hakki.and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range,” IEEE Trans, MTT-16, July (1985) 402-406.
    [8] Y. Kobayashi and M. Katoh, ”Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans, MTT-33, No.7, July (1985).
    [9] T. Nishikawa, K. Wakino, H. Tamure, H. Tanaka, and Y Ishikawa,“ Precise Measurement Method for Temperature Coefficient of Microwave Dielectric Resonator Material”, IEEE MTT-S Int. Microwave Symp., Dig., (1980) 3277-3280.
    [10] S. Y. Cho, I. T. Kim and K. S. Hong, “ Microwave dielectric properties and applications of rare-earth aluminates,” J. Mater. Res., 14, 114(1999)
    [11] D. G. Lim, B. H. Kim, T. G. Kim and H. J. Jung, “ Microwave Dielectric Properties
    of the (1-x)LaAlO3-xTiO2 System,” Materials Research Bulletin, Vol. 34, Nos.10/11, (1999)1577-1582
    [12] H. C. Lu, L. E. Burkhart and G. L. Schrader, “Sol-Gel Process for the Preparation of Ba2Ti9O20 and BaTi5O11,” J. Am. Ceram. Soc., 74[5](1991) 968-72
    [13]O. Renount, J. P. Boilt and F. Chaput, “Sol-gel Processing and Microwave Characteristics of Ba(Mg1/3Ta2/3)O3 Dielectrics,” J. Am. Ceram. Soc., 75 (12), 3337-40 (1992)
    [14] S. Katayama, I. Yoshinaga, N. Yamada and T. Nagai, “Low-Temperature Synthesis of Ba(Mg1/3Ta2/3)O3 Ceramics from Ba-Mg-Ta Alkoxide Precursor ,” J. Am. Ceram. Soc., 79 [8] (1996) 2059-64.
    [15] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang and R. E. Newnham,”Effect of Glass Additions on BaO-TiO2-WO3 Microwave Ceramics”, J. Am. Ceram. Soc., 7 (1994)1909-1916.
    [16] C. M. Cheng, C. F. Yang, and S. H. Lo, “Sintering and Dielectric Properties of Ba2Ti9O20 Microwave Ceramics by Glass Addition”, Jpn. J. Appl. Phyys 36, L1604-L1607.
    [17] C. C. Lee and P. Lin, “Effect of Glass Additions on Microwave Properties of BaO-La2O3-4.7TiO2’’, Jpn. J. Appl. Phys., 37, (1998) 6048-6054.
    [18] C. S. Hsu and C. L. Huang, “Effects of CuO additive on Sintering and Microwave Dielectric Behaviors of LaAlO3 Ceramics” Mat. Res. Bull. 36, (2001).
    [19] D. W. Kim, K. H. Ko and K. S. Hong, “Influence of Coper Oxide Addtions to Zinc Niobate Microwave Ceramics on Sintering Temperature and Dielectric Properties,” J. Am. Ceram. Soc. 84 (2001) 286
    [20] C. L. Huang and M. H. Weng, “Effect of CuO Addtion on (Zr,Sn)TiO4 Microwave Dielectric Ceramics,” Mat. Res. Bull. 35, (2000) 1881
    [21] M. Valant, D. Suvorov and D. Kolar, “ Role of Bi2O3 in Optimizing the Dielectric Properties of Ba4.5Nd9Ti18O54-Based Microwave Ceramics,” J. Mater. Res., 11 [4] (1996) 928-931.
    [22] C. L. Huang, M. H. Weng and H. L. Chen, “Effect of additives on Microstructures and microwave dielectric properties of (Zr, Sn)TiO4 ceramics,” Materials Chemistry and Physics 8996(2001) 1-6
    [23] T. Takada, S.F. Wang, and Syoshikawa, S. T. Jang and R. E. Newnham, “Effect of Glass Addition on (Zr,Sn)TiO4 for Microwave Applications,” J. Am. Ceram. Soc., 77 (1994) 1909.
    [24] R. Kudesia, A. E. Mchale and R. L. Snyder, “ Effect of LaO2/ZnO Additives on Microstructure and Microwave Dielectric Properties of Zr0.8Sn0.2TiO4 Ceramics,” J. Am. Ceram. Soc , 77, (1994) 3215.
    [25] H. Yamamoto, A. Koga, S. Shibagaki and N. Ichinose, “Low-Temperature Firing of MgTiO3-CaTiO3 Microwave Dielectric Ceramics Modified with B2O3 orV2O5,” J. Ceram. Soc. Jpn., 106 [3 ](1998) 339-343
    [26] H. Kagata, T. Inoue, J. Kato and I. Kameyama, “ Low-Fire Bismuth-Based Dielectric Ceramics for Microwave Use”, Jpn. J. Appl. Phys., 31, (1992) 3252-3255
    [27] K. R. Han, J. W. Jang, S. Y. Cho, D.Y. Jeong and K.S. Hong, “Preparation and dielectric Properties of Low-Temperature-Sinterable(Zr0.8Sn0.2)TiO4 Powder ”, J .Am. Ceram. Soc., 81, (1998) 1209-14.
    [28] A. Yamada, Y. Utsumi and H. Watarai, “The effect of Mn Addition on Dielectric Properties and Microstructure of BaO-Nd2O3 Ceramics,”Jpn. J. Appl. Phys., 30.9B (1991) 2350-2353.
    [29] H. T. Kim, S. H. Kim, S. Nahm and J. D. Byun, “Low-Temperature Sintering and Microwave Properties of Zinc Materitanate-Rutile Mixtures Using Boron,” J. Am Ceram. Soc., 82(11) (1999) 3043-3048.
    [30] M. Valant, D. Suvorov and D. Kolar, “ Role of Bi2O3 in Optimizing the Dielectric Properties of Ba4.5Nd9TI18O54-TiO2 Based Microwave Ceramics,” J. Mat. Res., 11 (4) (1996) 928-931.
    [31] M. F. Yan, H. C. Ling and W. W. Rhodes, “Low-Firing Temperature-Stable Dielectric Compositions Based on Bismuth Nikel Zinc Niobates,” J. Am. Ceram. Soc., 73〔4〕(1990) 1106-107.
    [32] V. Satheesh, P. Murugavel, V. R. K. Murthy and B. Viswanathan, “Synthesis
    and Role of Nd and Sm Do the Microwave Dielectric Properties of BaNd2(1-x)Sm2xTi5O14 Dielectric Resonator,” Material Science and Engineering B48 (1997)202-204
    [33] P. Laffez, G. Desgardin, and B. Raveau, “Microwave Dielectric Properties of Doped Ba6-x(Sm1-y,Ndy)8+2/3xTi18O54 Oxides,” Journal of Materials Science, 30 (1995) 267 –273.
    [34] H. Ohsato, T. Ohhashi, S. Nishigaki, T. Okuda, K. Sumiya and S. Suzuki, “Microwave Dielectric Properties and Structure of the Ba6-3xSm8+2xTi18O54”, Jpn. J. Appl. Phys.32 (1993) 4323.
    [35] M. Mizuta, K. Uenoyama, H. Ohsato, S. Nishigaki, and T. Okuda, “Formation of Tungsten-Bronze-Type (Ba6-3xSm8+2x)αTi18-yAlyO54 Solid Solution and Microwave Dielectric Properties”, Jan. J. Appl. Phys. Vol. 36 (1996)5056-5068.
    [36] M. Imaeda, K. Ito, M. Mizuta, H. Ohsato, S. Nishigaki and T. Okuda, “Microwave Dielectric Properties and Structure of the Ba6-3xSm8+2xTi18O54 with Sr Substituded for Ba”, Jan. J. Appl. Phys. Vol. 36 (1997) 6012-6015
    [37] A. J. Mouson and J. M. Herbert ,Electroceramics Materials Properties Applications CHAPMAM and HALL, 288-290, (1990).
    [38] Bernard Jaffe William R. Cook, Hans Jaffe, Piezoelectric Ceramics, ACADEMIC PRESS ,212-217, (1971).
    [39] Werner Kanzig: Ferroelectrics and Antiferroelectrics, ACADEMIC PRESS, 171-172, (1957).
    [40] C. J. Rawn, D. P. Birine M. A. Bruck and J. H. Enemark, “Structural Invetigation of Ba6-3xLa8+2xTi18O54(x=0.27, Ln=Sm) by Single Crystal X-ray Diffraction in Space Group Pnma(No.62) J. Mater. Res., 13, No. 1,Jan (1998) 187-196.
    [41]R. Ubic, I. M. Reancy and W. E. Lee, “Space Group Determination of Ba6-3xNd8+2xTi18O54”, J. Am. Ceram. Soc.82 [5] (1999)1336-1338.
    [42] H. Oshato, S. Nishigaki, and T. Okuda, “Superlattice and Dielectric Properties of BaO-R2O3-TiO2 (R=La, Nd, and Sm) Microwave Dielectric Compounds,” Jan. J. Appl. Phys. Vol. 31 (1992)3136-3138.
    [43] K. Fukuda, I. Fujii, R. KiToh, Y. Cho and I. Awai, “Influence of Rare Earth Ions on BaO-TiO4-Rare Earth Oxide Ceramics for Microwave Applications,” Jpn. J .Appl. Phys., 32 (1993) 1712-1715.
    [44] H. Ohsato, H. kato, M .Mizuta, S. Nishigaki and T. Okuda, “Microwave Dielectric Properties of the Ba6-x(Sm1-y,Ry)8+2/3xTi18O54 (R=Nd and La) Solid Solution with Zero Temperature Coefficient of the resonant Frequency,” Jan. J. Appl. Phys. 32 (1995) 5413-5417.
    [45] H. Oshato, A. Komura, Y. Tagaki, S. Nishigaki, and T. Okuda, “Microwave Dielectric Properties and Sintering of Ba6-3xR8+2xTi18O54(R=Sm, x=2/3) Solid with Added Rutile,” Jan. J. Appl. Phys. Vol. 31 (1992) 3136-3138
    [46] J. M. Wu and M.C. Chang, ”Reaction Sequence and Effects of Calcination and Sintering on Microwave Proprerties of (Ba,Sr)O-Sm2O3-TiO4 Ceramics”, J. Am. Ceram. Soc., 73(6) (1990) 1599-605
    [47] S. Nishigaki, H. Kato, S. Yang and R Kamimura, “Microwave Dielectric Properties of (Ba,Sr)O-Sm2O3-TiO2,” Ceramics Am. Ceram. Soc. Bull. 66 (1987) 1405-1410 .
    [48] M.Sagawa, M.Makimoto, and S.Yamashita, “A Design Method of Bandpass Filters Using Dielectric-Filled Coaxial Resonators”, IEEE Trans. Microwave Theory Tech., vol. MTT –33, 2, (1985) 152-157.
    [49] M. Makimoto and S. Yamashita, “ Compact Bandpass Filters Using Stepped Impedance Resonators”, IEEE Transactions Microwave Theory Tech., vol. 67, pp. 16-19, Jan. 1979.
    [50] K.Hano, H.Kohriyama, and K.Sawamoto, “A Direct-Coupled -Coaxial Resonator Bandpass Filter for Land Mobile Communications,” IEEE Trans. Microwave Theory Tech., MTT –34, 9, (1986) 972-976
    [51] Cheng-Liang Huang and Cheng-Chyi You, “Analysis and Design of Inhomogeneous Coupled-Stripline Microwave Bandpass Filters”, Microwave Journal, Vol. 41, No. 9, pp. 114-124, September, 1998.
    [52] G. L. Matthaei, “Interdigital Band-pass Filter”, IEEE Trans. Microwave Theory Tech., vol. MTT –10, (1962) 479-491.
    [53] S. Caspi and J.Adelman, “Design of Combline and Interdigital Filter with Tapped-Line Input,” IEEE Trans. Microwave Theory Tech., vol. MTT –36, no.4, pp. 759-763, April 1988.
    [54] G. L. Matthaei, “Comb-line Band-pass Filter of Narrow or Moderate Bandwidth”, IEEE Trans. Microwave Theory Tech., vol. MTT-6, (1963) 82-91,
    [55] L. Young, “ Direct-coupled Cavity Filters for Wide and Narrow Bandwidth,” IEEE Trans. Microwave Theory Tech., vol. MTT-11, pp 162-178, May 1963.
    [56] R. Levy, “Theory of Direct Coupled-Cavity Filters”, IEEE Trans. Microwave Theory Tech., vol. MTT-15, (1967) 340-348 .
    [57] J.A.G. Malherbe, “Microwave Transmission Line,” Artech House, INC., 1979.
    [58] Cheng-Chyi You, Cheng-Liang Huang, and Chung-Chuang Wei, “Single-Block Ceramic Microwave Bandpass Filters,” Microwave Journal, Vol.37, No.11, pp.24-35, November, 1994.
    [59] J. K. Plourde and C. L. Ren, “Applications of Dielectric Resonators in Microwave Components”, IEEE Trans. Microwave Theory Tech., vol. MTT-29, (1981) 754-770,
    [60] S. B. Chon, “Microwave Bandpass Filters Containing High Q Dielectric Resonators”, IEEE Trans. Microwave Theory Tech., MTT-16, (1968) 218-227.
    [61] H. Matsumoto, T. Yorita, and T. Nishikawa, “Miniaturized Duplexer Using Rectangular Coaxial Dielectric Resonators for Cellular Portable Telephone” IEICE Transaction, vol E 74. No.5 May 1991.
    [62] S. Yamashita and M. Makimoto, “Miniaturized Coaxial Resonator Partially Loaded with High-dielectric-Constant Microwave Ceramics,” IEEE Transactions Microwave Theory Tech, vol. MTT-31, No.9 (1983) 698-703.
    [63] C. C. You, Cheng-Liang Huang and Chung-Chung Wei, “Single-block ceramic Microwave Bandpass Filters,” Microwave Journal, (1994) 24-33,


    下載圖示 校內:立即公開
    校外:2002-07-09公開
    QR CODE