| 研究生: |
方冠升 Fang, Guan-Sheng |
|---|---|
| 論文名稱: |
具飛馳電容之新型三埠換流器 A Novel Three-port Inverter with Flying Capacitor |
| 指導教授: |
陳建富
Chen, Jiann-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 多階層換流器 、飛馳電容 、三埠 、電池 |
| 外文關鍵詞: | Multi-level inverter, flying capacitor, three port, battery |
| 相關次數: | 點閱:84 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於三埠式介面可使系統供電更為彈性,具解耦電路之微換流器於獨立型的再生能源供電系統應用中廣受歡迎。而多階層換流器具有不需提高切換頻率即可降低總諧波失真之特點,因此常被使用於高功率的換流器應用。本論文結合三埠式的概念及多階層換流器的技術,提出一具飛馳電容之新型三埠換流器。
本文所提出之新型三埠換流器架構能同時達到高功率應用、三埠的單級轉換介面以及電池充電控制。除此之外,此架構還擁有低開關電壓應力及較少開關數量等優點。最後實作出一組具有400 V直流輸入電壓埠、100 V電池埠及120 V 交流輸出埠之三埠式換流器實驗電路來驗證本文之理論分析。
由實驗結果可得知,於單輸入單輸出供電模式中,濾波前之輸出電壓總諧波失真率小於7%,最大效率達到98.1%。而在雙輸入單輸出供電模式及單輸入雙輸出供電模式中,濾波前之輸出電壓總諧波失真率皆小於11.7%,最大效率分別達到98.1%及98.7%。
The micro-inverters using decoupling circuit are popular for stand-alone renewable system applications recently because the three-port interface makes the system more flexible. In Addition the multi-level inverters are particularly prominent for high power applications because of the low total harmonic distortion performance without increasing the switching frequency. By combining the three-port concept and the multilevel inverter technique, a novel three-port inverter is proposed in this thesis.
The proposed topology can achieve three-port single-stage interface, charging regulator and high-power application simultaneously. Besides, the topology has the advantages of the low switch voltage stress and less component. Finally a prototype of the inverter with an input port for 400 Vdc voltage source, a bidirectional port for 100 V battery, and an AC output port for 120 Vac_rms is implemented to verify the theoretical analysis.
The experimental results show that the voltage total harmonic distortion before filter in SISO mode is lower than 7%. The voltage total harmonic distortion before filter total harmonic distortion in DISO and SIDO modes are lower than 11.7%. The efficiency in SISO is up to 98.1%, and the system efficiency is up to 98.1% and 98.7% in DISO and SIDO modes.
[1]
Y. K. Chen, Y. C. Wu, C. C. Song, and Y. S. Chen, " Design and Implementation of Energy Management System With Fuzzy Control for DC Microgrid Systems," IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1563-1570, Apr. 2013
[2]
H. S. Krishnamoorthy, D. Rana, P. Garg, P. N. Enjeti, and I. J. Pitel, " Wind Turbine Generator–Battery Energy Storage Utility Interface Converter Topology With Medium-frequency Transformer Link," IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4146-4155, Aug. 2014.
[3]
A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, "Evaluation of Current Controllers for Distributed Power Generation System," IEEE Trans. Power Electron., vol. 24, no. 2, pp. 654-664, Mar. 2009.
[4]
T. S. Wu, C. H. Chang, L. C. Lin, Y. C. Chang, and Y. R. Chang, "Two-phase Modulated Digital Control for Three-phase Bidirectional Inverter with Wide Inductance Variation," IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1598-1607, Apr. 2013.
[5]
D. Dong, I. Cvetkovic, D. Boroyevich, W. Zhang, R. Wang, and P. Mattavelli, "Grid-interface Bidirectional Converter for Residential DC Distribution Systems-part one: High-density Two-stage Topology," IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1655-1666, Apr. 2013.
[6]
R. J. Wai, R. Y. Duan, and K. H. Jheng, "High-efficiency Bidirectional DC-DC Converter with High-voltage Gain," IET Power Electron., vol. 5, no. 2, pp. 137-184, Feb. 2012.
[7]
R. Y. Duan and J. D. Lee, "High-efficiency Bidirectional DC-DC Converter With Coupled Inductor," IET Power Electron, vol. 5, no. 1, pp. 115-123, Jan. 2012.
[8]
E. Sanchis, E. Maset, A. Ferreres, J. B. Ejea, V. Esteve, J. Jordan, J. Calvente, A. Garrigos, and J. M. Blanes, "Bidirectional High-efficiency Nonisolated Step-up Battery Regulator," IEEE Trans. Aerospace and Electronic Systems, vol. 47, no. 3, pp. 2230-2239, Jul. 2011.
[9]
H. Tao, J. L. Duarte, and M. A. M. Hendrix, "Multiport Converters for Hybrid power sources," in Proc. IEEE Power Electron. Spec. Conf., Jun. 2008.
[10]
K. Sun, L. Zhang, Y. Xing, and J. M. Guerrero, "A Distributed Control Strategy Based on DC Bus Singaling for Modular Photovoltaic Generation System with Battery Energy Storage," IEEE Trans. Power Electron., vol. 26, no. 10, pp. 3032-3045, Oct. 2011.
[11]
K. Sun, L. Zhang, Y. Xing, and J. M. Guerrero, "Bifurcation Analysis of Standalone Photovoltaic-battery Hybrid Power System," IEEE Trans. Circuits and Systems, vol. 60, no. 5, pp. 1354-1365, Apr. 2013.
[12]
Y. M. Chen, Y. C. Liu, and F. Y. Wu, "Multi-input DC/DC Converter Based on the Multiwinding Transformer for Renewable Energy Applications," IEEE Trans. Ind. Applicaions., vol. 38, no. 4, pp. 1096-1104, Jul. 2002.
[13]
J. L. Durate, M. Hendrix, and M. G. Simoes, "Three-port Bidirectional Converter for Hybrid Fuel Cell System," IEEE Trans. Power Electron., vol. 22, no. 2, pp. 480-487, Mar. 2007.
[14]
H. Tao, A. Kotsopoulos, J. L. Duarte, and M. A. M. Hendrix, "Three-port Triple-half-bridge Bidirectional Converter with Zero-voltage Switching," IEEE Trans. Power Electron., vol. 23, no. 2, pp. 782-792, Mar. 2008.
[15]
Z. Zhang, O. C. Thomsen, M. A. E. Anderson, and H. R. Nielsen, "Dual-input Isolated Full-bridge Boost DC–DC Converter Based on the Distributed Transformers," IET Power Electron., vol. 5, no. 7, pp. 1074-1083, Aug. 2012.
[16]
Z. Qian, O. Abdel-Rahman, H. Hu, and I. Batarseh, "Multi-channel Three-port DC/DC Converters as Maximum Power Tracker, Battery Charger and Bus Regulator," in Applied Power Electron. Conf. APEC, Feb. 2010.
[17]
H. Wu, R. Chen, J. Zhang, Y. Xing, H. Hu, and H. Ge, "A Family of Three-port Half-bridge Converters for a Stand-alone Renewable Power System," IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2697-2706, Sep. 2011.
[18]
N. Vazquez, C. M. Sanchez, C. Hernandez, E. Vazquez, and R. Lesso, "A Three Port Converter for Renewable Energy Applications," IEEE International Symposium. ISIE, Jun. 2011.
[19]
J. Rodríguez, J. S. Lai, and F. Z. Peng, "Multilevel Inverters: A Survey of Topologies, Controls, and Applications," IEEE Trans. Ind. Applicaions., vol. 49, no. 4, pp. 724-738, Aug. 2002.
[20]
J. Zhao, Y. Han, X. He, C. Tan, J. Cheng, and R. Zhao, "Multilevel Circuit Topologies Based on the Switched-capacitor Converter and Diode-clamped Converter," IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2127-2136, Aug. 2011.
[21]
X. Yuan and I. Barbi, "Fundamentals of a New Diode Clamping Multilevel Inverter," IEEE Trans. Power Electron., vol. 15, no. 4, pp. 711-718, Jul. 2000.
[22]
Z. Shu, X. He, Z. Wang, D. Qiu, and Y. Jing, “Voltage Balancing Approaches for Diode-clamped Multilevel Converters Using Auxiliary Capacitor-based Circuits,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2111-2124, May. 2013.
[23]
Y. Zhang and L. Sun, “An Efficient Control Strategy for a Five-level Inverter Comprising Flying-capacitor Asymmetric H-bridge,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4000-4009, Sep. 2011.
[24]
M. Khazraei, H. Sepahvand, K. A. Corzine, and M. Ferdowsi, “Active Capacitor Voltage Balancing in Single-phase Flying-capacitor Multilevel Power Converters,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 769-778, Feb. 2012.
[25]
A. Shukla, A. Ghosh, and A. Joshi, “Improved Multilevel Hysteresis Current Regulation and Capacitor Voltage Balancing Schemes for Flying Capacitor Multilevel Inverter,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 518-529, Mar. 2008.
[26]
I. D. Kim, E. C. Nho, H. G. Kim, and J. S. Ko, “A Generalized Undeland Snubber for Flying Capacitor Multilevel Inverter and Converter,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 1290-1296, Dec. 2004.
[27]
J. Salmon, A. M. Knight, and J. Ewanchuk, “Single-phase Multilevel PWM Inverter Topologies Using Coupled Inductors,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1259-1266, May. 2009.
[28]
Z. Li, P. Wang, Y. Li, and F. Gao, “A Novel Single-phase Five-level Inverter With Coupled Inductors,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2716-2725, Jun. 2012.
[29]
B. Vafakhah, J. Salmon, and A. M. Knight, “A New Space-vector PWM With Optimal Switching Selection for Multilevel Coupled Inductor Inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2354-2364, Jul. 2010.
[30]
Y. M. Chen and C. Y. Liao, “Three-port Flyback-type Single-phase Microinverter
with Active Power Decoupling Circuit,” in Proc. IEEE Energy Convers. Congr. Expo., pp. 501-506, Sep. 2011.
[31]
H. Hu, S. Harb, N. Kutkut, I. Batarseh, and Z. J. Shen, “A Review of Power Decoupling Techniques for Microinverters With Three Different Decoupling Capacitor Locations in PV Systems,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2711-2726, Jun. 2013.
[32]
B. J. Pierquet, and D. J. Perreault, “A Single-phase Photovoltaic Inverter Topology Witha Series-connected Energy Buffer,” IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4603-4611, Oct. 2013.
[33]
S. Harb, M. Mirjafari, and R. S. Balog, “Ripple-port Module-integrated Inverter for
Grid-connected PV Applications,” IEEE Trans. Ind. Applicaions., vol. 49, no. 6, pp. 2692-2698, Nov./Dec 2013.
[34]
Z. Qian, O. Abdel-Rahman, H. Hu, and I. Batarseh, “An Integrated Three-port Inverter for Stand-alone PV Applications,” in Proc. IEEE Energy Convers. Congr. Expo., pp. 1471–1478, Sep. 2010.
[35]
T. Shimizu, K. Wada, and N. Nakamura, “Flyback-type Single-phase Utility Interactive Inverter With Power Pulsation Decoupling on the DC Input for an AC Photovoltaic Module System” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1264-2372, Sep. 2006.
[36]
H. Hu, S. Harb, X. Fang, D. Zhang, Q. Zhang, Z. J. Shen, and I. Batarseh, “A Three-port Flyback for PV Microinverter Applications With Power Pulsation Decoupling Capability,” IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3953-3964, Sep. 2012.
[37]
S. B. Kjaer and F. Blaabjerg, "Design Optimization of a Single Phase Inverter for Photovoltaic Applications," in Proc. IEEE Power Electronics Specialists Conference, vol. 3, pp. 1183-1190., 2003.
[38]
G. H. Tan, J. Z. Wang, and Y. C. Ji, “Soft-switching Flyback Inverter with Enhanced Power Decoupling for Photovoltaic Applications,” IET Trans. Elect. Power Appl.,vol. 1, no. 2, pp. 264–274, Mar. 2007.
[39]
B. Ge, H. Abu-Rub, F. Z. Peng, Q. Lei, A. T. de Almeida, F. J. T. E. Ferreira, D. Sun, and Y. Liu, “An Energy-stored Quasi-Z-source Inverter for Application to Photovoltaic Power System,” IEEE Trans. Power Electron., vol. 60, no. 10, pp. 4468-4481, Oct. 2013.
[40]
J. G. Cintron, Y. Li, S. Jiang, and F. Z. Peng, “Quasi-Z-source Inverter with Energy Storage for Photovoltaic Power Generation Systems,” in Proc. 26th Annu. IEEE Appl. Power Electron. Conf. Expo., pp. 401-406, Mar. 2011.
[41]
Y. M. Chen, Y. C. Liu, S. C. Hung, and C. S. Cheng “Multi-input Inverter for Grid-connected Hybrid PV/Wind Power System,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1070-1077, May. 2007.