簡易檢索 / 詳目顯示

研究生: 賴禹辰
Lai, Yu-Chen
論文名稱: 使用對抗學習和模擬異常進行組織病理影像的無監督異常檢測
Unsupervised Anomaly Detection on Histopathology Images Using Adversarial Learning and Simulated Anomaly
指導教授: 朱威達
Chu, Wei-Ta
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 人工智慧科技碩士學位學程
Graduate Program of Artificial Intelligence
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 41
中文關鍵詞: 無監督異常檢測組織病理影像
外文關鍵詞: Unsupervised Anomaly Detection, Histopathology Images
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 計算組織病理學的自動分析技術可幫助病理學家有效進行判讀。 然而,由於腫瘤標記樣本的稀缺性和未知疾病的存在,開發一個針對組織病理影像的全監督學習的穩健模型具有挑戰性。無監督異常檢測(Unsupervised anomaly detection, UAD) 方法主要用於工業檢驗,因此被提出來以促進高效分析。UAD只需要正常樣本進行訓練,大大減輕標註的負擔。在本文中,我們介紹一種基於重建模型的UAD方法,稱為ALSA-UAD,該方法通過對抗學習(adversarial learning)和模擬異常(simulated anomaly)來改進特徵學習。一方面,我們混合從正常圖像中提取的特徵,以構建更平滑的特徵分佈,並使用對抗學習來增強自動編碼器(autoencoder)的圖像重建能力。另一方面,我們通過圖像變形來模擬異常圖像,並引導自動編碼器更好地捕捉圖像的全局特徵。我們同時在病理學和電腦斷層掃描異常檢測基準上展示了其有效性,並顯示出最先進的性能。

    Automated analytics in computational histopathology have shown significant progress in aiding pathologists through digital image analysis. However, developing a robust model based on supervised learning for histopathology images is challenging because of the scarcity of tumor-marked samples and unknown diseases. Unsupervised anomaly detection (UAD) methods that were mostly used in industrial inspection are thus proposed to facilitate efficient analytics. UAD only requires normal samples for training and largely reduces the burden of labeling. In this paper, we introduce a reconstruction-based UAD approach called ALSA-UAD to improve representation learning based on adversarial learning and simulated anomalies. On the one hand, we mix up features extracted from normal images to build a smoother feature distribution and employ adversarial learning to enhance an autoencoder for image reconstruction. On the other hand, we simulate anomalous images by image deformation, and guide the autoencoder to catch global characteristics of images well. We demonstrate its effectiveness on histopathology and computed tomography anomaly detection benchmarks and show state-of-the-art performance.

    摘要 i Abstract ii Table of Contents iii List of Tables v List of Figures vi Chapter 1. Introduction 1 1.1 Overview 1 1.2 Motivation 1 1.3 Thesis Organization 3 Chapter 2. Related Works 4 2.1 Unsupervised Anomaly Detection, UAD 4 2.1.1. Embedding-based UAD 4 2.1.2. Reconstruction-based UAD 5 2.2 f-AnoGAN 6 Chapter 3. Methodology 8 3.1 Image Reconstruction 8 3.2 Mixed Features 8 3.3 Simulated Anomaly 10 3.4 Testing Stage 12 Chapter 4. Experiment 15 4.1 Dataset 15 4.1.1. Digital Histopathology Anomaly Detection Benchmark 15 4.1.2. Liver Computed Tomography Anomaly Detection Benchmark 15 4.2 Compared Methods and Evaluation Metric 16 4.3 Implementation Details 16 4.4 Performance on the DHAD benchmark 19 4.5 Performance on the LCTAD benchmark 22 4.6 Visualization 23 4.7 Dicussion 24 Chapter 5. Conclusion 28 References 29

    [1] Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. Ganomaly: Semisupervised anomaly detection via adversarial training. In Proceedings of Asian Conference on Computer Vision, volume 11363, pages 622–637, 2018.
    [2] Jinan Bao, Hanshi Sun, Hanqiu Deng, Yinsheng He, Zhaoxiang Zhang, and Xingyu Li. Bmad: Benchmarks for medical anomaly detection. arXiv:2306.11876, 2023.
    [3] Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico Karssemeijer, Geert Litjens, Jeroen A W M van der Laak, and the CAMELYON16 Consortium. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. The Journal of the American Medical Association, 318(22):2199–2210, 2017.
    [4] Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel. Reversing the abnormal: pseudo-healthy generative networks for anomaly detection. In Proceedings of Medical Image Computing and Computer Assisted Intervention, volume 14224, pages 293–303, 2023.
    [5] Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivantik, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró i Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus MaierHein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yu, Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, and Bjoern Menze. The liver tumor segmentation benchmark (lits). arXiv:1901.04056, 2019.
    [6] Ya-Chu Chang, Yu-Xiang Peng, Bo-Hua Yu, Henry C. Chang, Pei-Shin Liang, Ting-Yi Huang, Chao-Jie Shih, Li-An Chu, and Tzu-Kang Sangs. Vcp maintains nuclear size by regulating the dna damage-associated mdc1–p53–autophagy axis in drosophila. Nature Communications, 12(1):4258, 2021.
    [7] Liyang Chen, Zhiyuan You, Nian Zhang, Juntong Xi, and Xinyi Le. Utrad: Anomaly detection and localization with u-transformer. Neural Networks, 147:53–62, 2022.
    [8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In International conference on machine learning, pages 1597–1607, 2020.
    [9] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. Padim: a patch distribution modeling framework for anomaly detection and localization. In Proceedings of International Conference on Pattern Recognition, volume 12664, pages 475–489, 2021.
    [10] Hanqiu Deng and Xingyu Li. Anomaly detection via reverse distillation from one-class embedding. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9727–9736, 2022.
    [11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of Advances in Neural Information Processing Systems, volume 27, pages 2672–2680, 2014.
    [12] Denis Gudovskiy, Shun Ishizaka, and Kazuki Kozuka. Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. In Proceedings of IEEE Winter Conference on Applications of Computer Vision, pages 1819–1828, 2022.
    [13] Hewei Guo, Liping Ren, Jingjing Fu, Yuwang Wang, Zhizheng Zhang, Cuiling Lan, Haoqian Wang, and Xinwen Hou. Template-guided hierarchical feature restoration for anomaly detection. In Proceedings of IEEE/CVF International Conference on Computer Vision, pages 6424–6435, 2023.
    [14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.
    [15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proceedings of Advances in Neural Information Processing Systems, volume 33, pages 6840–6851, 2020.
    [16] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-image translation. In Proceedings of European Conference on Computer Vision, pages 172–189, 2018.
    [17] Bennett Landman, Zhoubing Xu, J Igelsias, Martin Styner, T Langerak, and Arno Klein. Miccai multi-atlas labeling beyond the cranial vault–workshop and challenge. In Proceedings of MICCAI Multi-Atlas Labeling Beyond Cranial the Vault—Workshop, page 12, 2015.
    [18] Sungwook Lee, Seunghyun Lee, and Byung Cheol Song. Cfa: Coupled-hyperspherebased feature adaptation for target-oriented anomaly localization. IEEE Access, 10:78446–78454, 2022.
    [19] Bin Li, Yin Li, and Kevin W. Eliceiri. Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14313–14323, 2021.
    [20] Chun-Liang Li, Kihyuk Sohn Jinsung Yoon, and Tomas Pfister. Cutpaste: Selfsupervised learning for anomaly detection and localization. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9659–9669, 2021.
    [21] Yi Li and Wei Ping. Cancer metastasis detection with neural conditional random field. arXiv:1806.07064, 2018.
    [22] Jasper Linmans, Gabriel Raya, Jeroen van der Laak, and Geert Litjens. Diffusion models for out-of-distribution detection in digital pathology. Medical Image Analysis, 93:103088, 2024.
    [23] Zhikang Liu, Yiming Zhou, Yuansheng Xu, and Zilei Wang. Simplenet: A simple network for image anomaly detection and localization. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20402–20411, 2023.
    [24] Ming Y. Lu, Drew F. K. Williamson, Tiffany Y. Chen, Richard J. Chen, Matteo Barbieri, and Faisal Mahmood. Data-efficient and weakly supervised computational pathology on whole-slide images. Nature Biomedical Engineering, 5(6):555–570, 2021.
    [25] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, and Stephen Paul Smolley. Least squares generative adversarial networks. In Proceedings of IEEE/CVF International Conference on Computer Vision, pages 2794–2802, 2017.
    [26] Felix Meissen, Benedikt Wiestler, Georgios Kaissis, and Daniel Rueckert. On the pitfalls of using the residual error as anomaly score. In Proceedings of Medical Imaging with Deep Learning, pages 914–928, 2022.
    [27] Milda Pocevičiūtė Milda, Gabriel Eilertsen, and Claes Lundström. Unsupervised anomaly detection in digital pathology using gans. In Proceedings of IEEE International Symposium on Biomedical Imaging, pages 1878–1882, 2021.
    [28] Walter H. L. Pinaya, Mark S. Graham, Robert Gray, Pedro F. da Costa, Petru-Daniel Tudosiu, Paul Wright, Yee H. Mah, Andrew D. MacKinnon, James T. Teo, Rolf Jager, David Werring, Geraint Rees, Parashkev Nachev, Sebastien Ourselin, and M. Jorge Cardoso. Fast unsupervised brain anomaly detection and segmentation with diffusion models. In Proceedings of Medical Image Computing and Computer Assisted Intervention, volume 13438, pages 705–714, 2022.
    [29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of Medical Image Computing and Computer Assisted Intervention, volume 9351, pages 234–241, 2015.
    [30] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter Gehler. Towards total recall in industrial anomaly detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14298–14308, 2022.
    [31] Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and Bastian Wandt. Fully convolutional cross-scale-flows for image-based defect detection. In Proceedings of IEEE Winter Conference on Applications of Computer Vision, pages 1829–1838, 2022.
    [32] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In Proceedings of International Conference on Machine Learning, volume 80, pages 4393–4402, 2018.
    [33] Mohammadreza Salehi, Niousha Sadjadi, Soroosh Baselizadeh, Mohammad H. Rohban, and Hamid R. Rabiee. Multiresolution knowledge distillation for anomaly detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14897–14907, 2021.
    [34] Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Georg Langs, and Ursula Schmidt-Erfurth. f-anogan: Fast unsupervised anomaly detection with generative adversarial networks. Medical Image Analysis, 54:30–44, 2019.
    [35] Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, and Yongbing Zhang. Transmil: Transformer based correlated multiple instance learning for whole slide image classification. In Proceedings of Advances in Neural Information Processing Systems, volume 34, pages 2136–2147, 2021.
    [36] Nina Shvetsova, Bart Bakker, Irina Fedulova, Heinrich Schulz, and Dmitry V. Dylov. Anomaly detection in medical imaging with deep perceptual autoencoders. IEEE Access, 9:118571–118583, 2021.
    [37] Ye Tian, Li Yang, Wei Wang, Jing Zhang, Qing Tang, Mili Ji, Yang Yu, Yu Li, Hong Yang, and Airong Qian. Computer-aided detection of squamous carcinoma of the cervix in whole slide images. arXiv:1905.10959, 2019.
    [38] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(86):2579–2605, 2008.
    [39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhi. Attention is all you need. In Proceedings of Advances in Neural Information Processing Systems, volume 30, 2017.
    [40] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8798–8807, 2018.
    [41] Xiyue Wang, Yuexi Du, Sen Yang, Jun Zhang, Minghui Wang, Jing Zhang, Wei Yang, Junzhou Huang, and Xiao Han. Retccl: Clustering-guided contrastive learning for whole-slide image retrieval. Medical Image Analysis, 83:102645, 2023.
    [42] Xiyue Wang, Sen Yang, Jun Zhang, Minghui Wang, Jing Zhang, Wei Yang, Junzhou Huang, and Xiao Han. Transformer-based unsupervised contrastive learning for histopathological image classification. Medical Image Analysis, 81:102559, 2022.
    [43] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004.
    [44] Shinji Yamada and Kazuhiro Hotta. Reconstruction student with attention for studentteacher pyramid matching. arXiv:2111.15376, 2021.
    [45] Xingyu Li Yinsheng He. Whole-slide-imaging cancer metastases detection and localization with limited tumorous data. In Proceedings of Medical Imaging with Deep Learning, pages 877–887, 2023.
    [46] Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. DrÆm - a discriminatively trained reconstruction embedding for surface anomaly detection. In Proceedings of IEEE/CVF International Conference on Computer Vision, pages 8310–8319, 2021.
    [47] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 586–595, 2018.
    [48] Xinyi Zhang, Naiqi Li, Jiawei Li, Tao Dai, Yong Jiang, and Shu-Tao Xia. Unsupervised surface anomaly detection with diffusion probabilistic model. In Proceedings of IEEE/CVF International Conference on Computer Vision, pages 6759–6768, 2023.
    [49] Kang Zhou, Shenghua Gao, Jun Cheng, Zaiwang Gu, Huazhu Fu, Zhi Tu, Jianlong Yang, Yitian Zhao, and Jiang Liu. Sparse-gan: Sparsity-constrained generative adversarial network for anomaly detection in retinal oct image. In Proceedings of IEEE International Symposium on Biomedical Imaging, pages 1227–1231, 2020.
    [50] Dejan Štepec and Danijel Skočaj. Unsupervised detection of cancerous regions in histology imagery using image-to-image translation. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 3780–3787, 2021.

    下載圖示
    2025-12-25公開
    QR CODE