簡易檢索 / 詳目顯示

研究生: 張皓筌
Chang, Hao-Chuan
論文名稱: 明膠水凝膠結合去細胞軟骨層片包覆髕骨下脂肪墊間質幹細胞在兔子膝關節軟骨修復的應用
Infrapatellar Fat Pad Derived Mesenchymal Stem Cells Laden Acellular Cartilage Sheets Combined with Gelatin Hydrogel for Cartilage Repair in Rabbit Model
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 60
中文關鍵詞: 水凝膠去細胞軟骨層片複合支架間質幹細胞生醫材料軟骨缺損動物模型
外文關鍵詞: hydrogel, acellular cartilage sheet, mesenchymal stem cells, composite scaffold, biomedical material, cartilage defect animal model
相關次數: 點閱:135下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因關節軟骨在受損後因組織再生能力不理想,在缺少有效的治療手段下將轉變成骨關節炎,而骨關節炎經常發生在全球尤其是高齡者身上造成患者的行動不便。近年來,軟骨的組織工程概念被廣泛使用,由細胞、支架和信號三個要素組合而成,期待能提升新生組織與宿主組織的整合與修復效果。
    去細胞材料能在保留細胞外基質結構與成分的同時去除會引起免疫反應的細胞成分。軟骨組織由於結構緊密需要以粉末或者層片的形式才能有效地去除細胞成分,不過會喪失作為三維支架的能力。因此,本研究將水凝膠與去細胞軟骨層片交互疊合後形成複合三維支架,並在此基礎上添加髕骨下脂肪墊間質幹細胞以符合完整的組織工程框架。去細胞軟骨層片中所包含的大量細胞外基質能提供細胞分化與生長的原生生化信號與生存結構,同時改善水凝膠所欠缺的機械性質強度。
    此複合支架在經過SEM所拍攝的微觀結構中可發現水凝膠與層片相互鍵結,擁有完整且穩定的支架結構,因此在壓縮的機械強度上也能得到明顯提升,且在層數提升時應能有更好的表現。在使用脂肪墊間質幹細胞所進行的體外活性測試中證明材料的無毒性後將複合支架與細胞結合應用至全層軟骨缺損的兔子動物模型當中。從術後4週與12週對新生組織時進行的巨觀觀察能發現表面的修復情況在植入支架後能夠得到明顯的提升,在幹細胞的輔助下能出現與宿主組織幾乎相同的色澤與光滑的表面。從微電腦斷層掃描 (micro-CT) 評估的骨密度中,支架的加入能在12週後顯著的拉高骨密度達到健康的程度。骨小樑的厚度則是所有組別都能在新生初期就有正常的數值表現。但在通過組織染色時發現,複合支架中的去細胞軟骨層片不易降解,導致治療初期時新生組織與周圍宿主組織整合效率降低,單純植入複合支架在12週時雖然表層軟骨有不錯的修復情形,但軟骨下骨的區域依舊會有支架的殘留。然而,擁有幹細胞輔助的組別能於12周後順利分解支架材料並完成軟骨下骨的組織整合。根據以上結果,本研究所設計的多層複合支架在結合幹細胞後具有良好的軟骨修復能力以及軟骨下骨再生效果。

    Due to the unsatisfactory tissue regeneration ability after articular cartilage is damaged, it will turn into osteoarthritis in the absence of effective treatment methods. Osteoarthritis often occurs all over the world, especially among the elderly, resulting in inconvenience for patients. In recent years, the concept of tissue engineering of cartilage has been widely used. It is composed of three elements: cells, scaffolds, and signals, and it is expected to improve the integration and repair effect of new tissue and host tissue.
    Decellularized materials can remove cellular components that can cause an immune response while retaining the structure and components of the extracellular matrix. Due to the compact structure, cartilage tissue needs to be in the form of powder or layer to effectively remove cell components, but it will lose the ability to serve as a three-dimensional scaffold. Therefore, in this study, the hydrogel and decellularized cartilage sheets were laminated alternately to form a composite three-dimensional scaffold, and on this basis, the infrapatellar fat pad mesenchymal stem cells were added to conform to the complete tissue engineering framework. The abundant extracellular matrix contained in decellularized cartilage sheets can provide native biochemical signals and survival structures for cell differentiation and growth while improving the strength of mechanical properties that hydrogels lack.
    In the microstructure of this composite scaffold taken by SEM, it can be found that the hydrogel and the layers are bonded to each other, and has a complete and stable scaffold structure, so the compressive modulus can also be significantly improved, and the number of layers is increased. should perform better. After the non-toxicity of the material was proved in the in vitro activity test using fat pad mesenchymal stem cells, the composite scaffold was combined with cells and applied to a rabbit animal model of full-thickness cartilage defect. From the macroscopic observation of the new tissue at 4 weeks and 12 weeks after the operation, it can be found that the repair of the surface can be significantly improved after implantation of the scaffold. With the help of stem cells, they can appear almost the same color and smooth as the host tissue surface. From the bone density assessed by micro-computed tomography (micro-CT), the addition of scaffolds can significantly increase bone density to a healthy level after 12 weeks. The thickness of trabecular bone was normal in all groups in the early regeneration. However, it was found through tissue staining that the decellularized cartilage layer in the composite scaffold was not easy to degrade, which leaded to a decrease in the integration efficiency of the new tissue and the surrounding host tissue at the initial stage of treatment. Although the superficial cartilage could be repaired well at 12 weeks after simply implanting the composite scaffold situation, the subchondral bone area still has scaffolding residues. However, the group with stem cell assistance was able to successfully decompose the scaffold material and complete the tissue integration of subchondral bone after 12 weeks. According to the above results, the multilayer composite scaffold designed in this study has good cartilage repair ability and subchondral bone regeneration effect after combining stem cells.

    Chapter 1: Introduction 1 1.1 Structure of articular cartilage 1 1.2 Osteoarthritis and clinical treatments 3 1.3 Cartilage tissue engineering 5 1.3.1 Tissue engineering 5 1.3.2 Infrapatellar fat pad derived mesenchymal stem cell 5 1.3.3 Gelatin hydrogel 6 1.3.4 Acellular cartilage sheets 7 1.4 Motivation and aim 8 Chapter 2: Materials and Methods 10 2.1 Experimental flow chart 10 2.2 Instruments and materials 10 2.2.1 Experimental materials 10 2.2.2 Experimental instruments 12 2.3 Scaffolds preparation methods 13 2.3.1 Synthesis of gelatin in-situ hydrogel 13 2.3.2 Preparation of acellular cartilage sheet 14 2.3.3 Preparation of sandwich model scaffolds 15 2.4 Isolation of infrapatellar fat pad derived mesenchymal stem cells 16 2.5 Characterization of acellular cartilage sheet 17 2.5.1 Morphological evaluation 17 2.5.2 Histological staining 17 2.6 Characterization of sandwich model scaffolds 18 2.6.1 Morphological evaluation 18 2.6.2 Mechanical properties 18 2.6.3 Cell viability 19 2.7 In vivo New Zealand white rabbit osteoarthritis animal models 20 2.7.1 Ethic statement 20 2.7.2 Animal Surgical procedure 20 2.7.3 Regeneration of surgical defect 22 2.7.3.1 Macroscopic evaluations 22 2.7.3.2 Micro-CT analysis 24 2.7.3.3 Histological staining 24 2.8 Statistical analysis 26 Chapter 3: Results and Discussion 27 3.1 Characterization of acellular cartilage sheet 27 3.1.1 Morphological evaluation 27 3.1.2 Histological staining 28 3.2 Characterization of sandwich model scaffolds 31 3.2.1 Morphological evaluation 31 3.2.2 Mechanical properties 34 3.2.3 Cell viability 36 3.3 In vivo analysis in New Zealand white rabbit animal models 37 3.3.1 Macroscopic evaluations 37 3.3.2 Micro-CT analysis 40 3.3.3 Histological staining 45 Chapter 4: Conclusion 52 Chapter 5: Limitations and future works 54 References 55

    [1] Lin, W., & Klein, J. (2021). Recent Progress in Cartilage Lubrication. Adv Mater, 33(18), e2005513. https://doi.org/10.1002/adma.202005513
    [2] Luo, Y., Sinkeviciute, D., He, Y., Karsdal, M., Henrotin, Y., Mobasheri, A., Onnerfjord, P., & Bay-Jensen, A. (2017). The minor collagens in articular cartilage. Protein Cell, 8(8), 560-572. https://doi.org/10.1007/s13238-017-0377-7
    [3] Armiento, A. R., Stoddart, M. J., Alini, M., & Eglin, D. (2018). Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater, 65, 1-20. https://doi.org/10.1016/j.actbio.2017.11.021
    [4] Klein, J. (2013). Hydration lubrication. Friction, 1(1), 1-23. https://doi.org/10.1007/s40544-013-0001-7
    [5] Krishnan, Y., & Grodzinsky, A. J. (2018). Cartilage diseases. Matrix Biol, 71-72, 51-69. https://doi.org/10.1016/j.matbio.2018.05.005
    [6] Poulet, B., & Staines, K. A. (2016). New developments in osteoarthritis and cartilage biology. Current opinion in pharmacology, 28, 8–13. https://doi.org/10.1016/j.coph.2016.02.009
    [7] Peng, Z., Sun, H., Bunpetch, V., Koh, Y., Wen, Y., Wu, D., & Ouyang, H. (2021). The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials, 268, 120555. https://doi.org/10.1016/j.biomaterials.2020.120555
    [8] Kwon, H., Brown, W. E., Lee, C. A., Wang, D., Paschos, N., Hu, J. C., & Athanasiou, K. A. (2019). Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol, 15(9), 550-570. https://doi.org/10.1038/s41584-019-0255-1
    [9] Boushell, M. K., Hung, C. T., Hunziker, E. B., Strauss, E. J., & Lu, H. H. (2017). Current strategies for integrative cartilage repair. Connect Tissue Res, 58(5), 393-406. https://doi.org/10.1080/03008207.2016.1231180
    [10] Liu, Y., Zhou, G., & Cao, Y. (2017). Recent Progress in Cartilage Tissue Engineering—Our Experience and Future Directions. Engineering, 3(1), 28-35. https://doi.org/10.1016/j.Eng.2017.01.010
    [11] Zhang, L., Hu, J., & Athanasiou, K. A. (2009). The role of tissue engineering in articular cartilage repair and regeneration. Critical reviews in biomedical engineering, 37(1-2), 1–57. https://doi.org/10.1615/critrevbiomedeng.v37.i1-2.10
    [12] Jiang, S., Guo, W., Tian, G., Luo, X., Peng, L., Liu, S., Sui, X., Guo, Q., & Li, X. (2020). Clinical Application Status of Articular Cartilage Regeneration Techniques: Tissue-Engineered Cartilage Brings New Hope. Stem Cells Int, 2020, 5690252. https://doi.org/10.1155/2020/5690252
    [13] Mochizuki, T., Muneta, T., Sakaguchi, Y., Nimura, A., Yokoyama, A., Koga, H., & Sekiya, I. (2006). Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis and rheumatism, 54(3), 843–853. https://doi.org/10.1002/art.21651
    [14] Brodkin, K. R., Garcia, A. J., & Levenston, M. E. (2004). Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials, 25(28), 5929-5938. https://doi.org/10.1016/j.biomaterials.2004.01.044
    [15] Darling, E. M., & Athanasiou, K. A. (2005). Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res, 23(2), 425-432. https://doi.org/10.1016/j.orthres.2004.08.008
    [16] Dragoo, J. L., Samimi, B., Zhu, M., Hame, S. L., Thomas, B. J., Lieberman, J. R., Hedrick, M. H., & Benhaim, P. (2003). Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. The Journal of Bone and Joint Surgery. British volume, 85-B(5), 740-747. https://doi.org/10.1302/0301-620x.85b5.13587
    [17] Tangchitphisut, P., Srikaew, N., Numhom, S., Tangprasittipap, A., Woratanarat, P., Wongsak, S., Kijkunasathian, C., Hongeng, S., Murray, I. R., & Tawonsawatruk, T. (2016). Infrapatellar Fat Pad: An Alternative Source of Adipose-Derived Mesenchymal Stem Cells. Arthritis, 2016, 4019873. https://doi.org/10.1155/2016/4019873
    [18] Hindle, P., Khan, N., Biant, L., & Peault, B. (2017). The Infrapatellar Fat Pad as a Source of Perivascular Stem Cells with Increased Chondrogenic Potential for Regenerative Medicine. Stem Cells Transl Med, 6(1), 77-87. https://doi.org/10.5966/sctm.2016-0040
    [19] Wei, W., Ma, Y., Yao, X., Zhou, W., Wang, X., Li, C., Lin, J., He, Q., Leptihn, S., & Ouyang, H. (2021). Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater, 6(4), 998-1011. https://doi.org/10.1016/j.bioactmat.2020.09.030
    [20] Akindoyo, J. O., Mariatti, M., Hamid, Z. A. A., Nurul, A. A., & Teramoto, N. (2020). Injectable hydrogel scaffold from natural biomaterials - An overview of recent studies. AIP Conference Proceedings, 2267(1). https://doi.org/10.1063/5.0015786
    [21] Bello, A. B., Kim, D., Kim, D., Park, H., & Lee, S. H. (2020). Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue engineering. Part B, Reviews, 26(2), 164–180. https://doi.org/10.1089/ten.TEB.2019.0256
    [22] Kurisawa, M., Lee, F., Wang, L.-S., & Chung, J. E. (2010). Injectable enzymatically crosslinked hydrogel system with independent tuning of mechanical strength and gelation rate for drug delivery and tissue engineering. Journal of Materials Chemistry, 20(26). https://doi.org/10.1039/b926456f
    [23] Wang, L. S., Du, C., Toh, W. S., Wan, A. C., Gao, S. J., & Kurisawa, M. (2014). Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials, 35(7), 2207–2217. https://doi.org/10.1016/j.biomaterials.2013.11.070
    [24] Zhang, X., Chen, X., Hong, H., Hu, R., Liu, J., & Liu, C. (2022). Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater, 10, 15-31. https://doi.org/10.1016/j.bioactmat.2021.09.014
    [25] Kim, Y. S., Majid, M., Melchiorri, A. J., & Mikos, A. G. (2019). Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med, 4(1), 83-95. https://doi.org/10.1002/btm2.10110
    [26] Xue, J. X., Gong, Y. Y., Zhou, G. D., Liu, W., Cao, Y., & Zhang, W. J. (2012). Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Biomaterials, 33(24), 5832–5840. https://doi.org/10.1016/j.biomaterials.2012.04.054
    [27] Gong, Y. Y., Xue, J. X., Zhang, W. J., Zhou, G. D., Liu, W., & Cao, Y. (2011). A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials, 32(9), 2265–2273. https://doi.org/10.1016/j.biomaterials.2010.11.078
    [28] Xue, J., He, A., Zhu, Y., Liu, Y., Li, D., Yin, Z., Zhang, W., Liu, W., Cao, Y., & Zhou, G. (2018). Repair of articular cartilage defects with acellular cartilage sheets in a swine model. Biomedical materials (Bristol, England), 13(2), 025016. https://doi.org/10.1088/1748-605X/aa99a4
    [29] Zahiri, S., Masaeli, E., Poorazizi, E., & Nasr-Esfahani, M. H. (2018). Chondrogenic response in presence of cartilage extracellular matrix nanoparticles. Journal of biomedical materials research. Part A, 106(9), 2463–2471. https://doi.org/10.1002/jbm.a.36440
    [30] 林依璇(2022)。去細胞軟骨層片結合原位成型水膠應用於軟骨修復。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/c2774k。
    [31] Hu, M., Kurisawa, M., Deng, R., Teo, C. M., Schumacher, A., Thong, Y. X., Wang, L., Schumacher, K. M., & Ying, J. Y. (2009). Cell immobilization in gelatin-hydroxyphenylpropionic acid hydrogel fibers. Biomaterials, 30(21), 3523-3531. https://doi.org/10.1016/j.biomaterials.2009.03.004
    [32] 王雪君(2019)。探討前驅幹細胞結合生物支架和物理治療於骨軟骨再生醫學之應用。﹝博士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/jwpmr8。
    [33] Wayne, J. S., McDowell, C. L., Shields, K. J., & Tuan, R. S. (2005). In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue engineering, 11(5-6), 953–963. https://doi.org/10.1089/ten.2005.11.953
    [34] Kawaguchi, A., Nakaya, H., Okabe, T., Tensho, K., Nawata, M., Eguchi, Y., Imai, Y., Takaoka, K., & Wakitani, S. (2009). Blocking of tumor necrosis factor activity promotes natural repair of osteochondral defects in rabbit knee. Acta Orthop, 80(5), 606-611. https://doi.org/10.3109/17453670903350115
    [35] Hunziker E. B. (2002). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and cartilage, 10(6), 432–463. https://doi.org/10.1053/joca.2002.0801
    [36] Bos, P. K., DeGroot, J., Budde, M., Verhaar, J. A., & van Osch, G. J. (2002). Specific enzymatic treatment of bovine and human articular cartilage: implications for integrative cartilage repair. Arthritis and rheumatism, 46(4), 976–985. https://doi.org/10.1002/art.10208
    [37] Dequeker, J., Mokassa, L., Aerssens, J., & Boonen, S. (1997). Bone density and local growth factors in generalized osteoarthritis. Microscopy research and technique, 37(4), 358–371. https://doi.org/10.1002/(SICI)1097-0029(19970515)37:4<358::AID-JEMT10>3.0.CO;2-L
    [38] Mc Donnell, P., Mc Hugh, P.E. & O’ Mahoney, D. Vertebral Osteoporosis and Trabecular Bone Quality. Ann Biomed Eng 35, 170–189 (2007). https://doi.org/10.1007/s10439-006-9239-9
    [39] Hall A. C. (2019). The Role of Chondrocyte Morphology and Volume in Controlling Phenotype-Implications for Osteoarthritis, Cartilage Repair, and Cartilage Engineering. Current rheumatology reports, 21(8), 38. https://doi.org/10.1007/s11926-019-0837-6
    [40] Karim, A., Amin, A. K., & Hall, A. C. (2018). The clustering and morphology of chondrocytes in normal and mildly degenerate human femoral head cartilage studied by confocal laser scanning microscopy. Journal of anatomy, 232(4), 686–698. https://doi.org/10.1111/joa.12768

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE