| 研究生: |
張琨閔 Chang, Kun-min |
|---|---|
| 論文名稱: |
輔酶CoQ10衍生物之合成與活性分析 Synthesis and Activity Analysis of Coenzyme Q10 Derivatives |
| 指導教授: |
蕭世裕
Shaw, Shyh-yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 輔酶 |
| 外文關鍵詞: | CoQ10 |
| 相關次數: | 點閱:72 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來輔酶CoQ10被應用在生化、醫藥、食品、化妝品領域中。當CoQ10被還原後形成Ubiquinol-10則容易被氧化,本研究主要針對Ubiquinol-10上的氫氧根官能基做衍生化反應得到CoQ10的衍生物,並測試CoQ10與其衍生物的活性比較。
以氫氧根官能基做酯化反應為主,合成出acetylated CoQ10(ACoQ10)、octanoylated CoQ10(OCoQ10)、succinylated CoQ10(SCoQ10)、semi- succinylated CoQ10(semi-SCoQ10)以及phosphate CoQ10(PCoQ10),其中ACoQ10、OCoQ10酯化反應是在鹼性條件進行,Ubiquinol-10與具有醯氯官能基反應,在室溫下反應時間只需30分鐘,得到的衍生物產率達95%以上,顯示以此方式進行酯化反應速率快、產率高。另外將CoQ10改變官能基後,發現其中SCoQ10、semi-SCoQ10、PCoQ10可以溶在醇類溶劑中,顯示衍生化的結果成功的將脂溶性的CoQ10,轉變具有親水性的結構。
每個衍生物除了可以保存在室溫中,經細胞抗氧化活性測試發現,semi-SCoQ10與PCoQ10的生物抗氧化能力比CoQ10好。
Coenzyme Q10 has been widely used in biochemistry recent years, including pharmaceutical﹑food and cosmetic fields. Ubiquinol-10 is the reduced form of CoQ10 which is easily oxidizied to CoQ10. The main purpose of the research is to prepare the derivatives of Ubiquinol-10 and examine their anti-oxidation activities.
A series of esterification modification has been performed on Ubiquinol-10 including acetylated CoQ10 (ACoQ10)﹑octanoylated CoQ10 (OCoQ10)﹑succinylated CoQ10 (SCoQ10)﹑semi-succinylated CoQ10 (semi-SCoQ10) and phosphate CoQ10 (PCoQ10). Esterification reactions of acetylated CoQ10 and octanoylated CoQ10 can be achieved under alkali condition. A milder esterification condition has been developed on the ubiquinol-10 by acetyl chloride reagents, the reaction can be achieved within 30 minutes and above 95% yield. It's a feasible method to produce ester derivatives at high reaction rate and yield.
In terms of the solubility of ubiquinol-10 modified compounds, the SCoQ10﹑semi-SCoQ10 and PCoQ10 can be dissolved in alcohol solvents, it means the derivatization results changed the hydrophobic CoQ10 to become more hydrophilic property.
Every derivatives are stable at room temperature and can be stored easily. Among the derivatives, the anti-oxidation activity of semi-SCoQ10﹑PCoQ10 are better than the others.
1. Crane, F. L., Discovery of ubquinone (coenzyme Q) and an overview of function., Mitochondrion., 7S, S2-S7, 2007.
2. Geromel, V., Darin, N., Chétien, D., Bénit, P., DeLonlay, P., Rötig, A., Munnich, A., and Rustin, P., Coenzyme Q10 and idebenone in the therapy of respiratory chain diseases:rationale and compareative benefits., Molecular Genetics and Metabolism., 77, 21-30, 2002.
3. Lipshutz, B. H., Mollard, P., Pfeiffer, S. S. and Chrisman, W., A short, highly efficient synthesis of coenzyme Q10., J. AM. CHEM. SOC., 124, 14282-14283, 2002.
4. Mitchell, P., The protonmotive Q cycle: a general formulation., Fed. Eur. Biochem. Soc. Lett., 59, 137-139, 1975.
5. Langsjoen, P. H., and Langsjoen, A. M., Coenzyme Q10 in cardiovascular disease with emphasis on heart failure and myocardial ischaemia., Asia Pacific Heart J., 7, 160-168, 1998.
6. Hodgson, J. M., Watts, G. F., Playford, D. A., Burke, V. and Croft, K. D., Coenzyme Q10 improves blood pressure and glycaemic control: a controlled trial in subjects with type 2 diabetes., European Journal of Clinical Nutrition., 56, 1137-1142, 2002.
7. Folkers, K., Brown, R., Judy, W. V. and Morita, M., Survival of cancer patients on therapy with coenzyme Q10., Biochemical and Biophysical Research Communications., 192, 241-245, 1993.
8. Linnane, A. W. and Eastwood, H., Cellular redox poise modulation; the role of coenzyme Q10, gene and metabolic regulation., Mitochondrion., 4, 779-789, 2004.
9. Chen H. and Tappel, Al. L., Protection of vitamin E, selenium, trolox C, ascorbic acid palmitate, acetylcysteine, coenzyme Q0, coenzyme Q10, beta-carotene, canthaxanthin, and (+)-catechin against oxidative damage to rat blood and tissues in vivo., Free Radical Biology & Medicine., 18, 949-953, 1995.
10. Weber, C., Bysted, A. and HØlmer, G., Coenzyme Q10 in the diet-daily intake and relative bioavailability., Molec. Aspects Med., 18(Supplement), s251-s254, 1997.
11. 胡淼琳, Coenzyme Q10的生化營養性質以及它的醫療功效., 自由基生物學與醫學., 2, 46-52, 1994.
12. Shunk, C. H., McPherson, J. F. and Folfers, K., Coenzyme Q. ⅩⅩⅠⅩ. monophosphate of dihydrocoenzyme Q10., Biochemical and Biophysical Research Communications., 6, 124-128, 1961.
13. Bentley, R., Ramsey, V. G., Springer, C. M., Dialameh, G. H. and Olson R. E., Application of a chemical degradation of coenzyme Q to problems biosynthesis., Biochemistry., 4, 166-176, 1965.
14. Inoue, S., Yamaguchi, R., Saito, K. and Sato, K., The synthesis of coenzyme Q., Bulletin of The Chemical Society of Japan., 47, 3098-3101, 1974.
15. Yamashita, S. and Yamamoto, Y., Simultaneous detection of ubiquinol and ubiquinone in human plasma as a marker of oxidative stress., Analytical Biochemistry., 250, 66-73, 1997.
16. Turunen, M., Appelkvist, E. L., Sindelar, P. and Dallner, G., Blood concentration of coenzyme Q10 increases in rats when esterified forms are administered. Biochemical and Molecular Action of Nutrients., 129, 2113-2118, 1999.
17. Afri, M., Ehrenberg, B., Talmon, Y., Schmidt, J., Cohen, Y. and Frimer, A. A., Active oxygen chemistry within the liposomal bilayer part III: locating vitamin E, ubiquinol and ubiquinone and their derivatives in the lipid bilayer., Chemistry and Physics of Lipids., 131, 107-121, 2004.
18. Watanabe, Y., Suzuki, H. and Ueda, T., HLB number of vitamins C, E, coenzyme Q10 derivatives and their transportation efficiency into skin., Vibrational Spectroscopy., 42, 195-200, 2006.
19. Mordente, A., Martorana, G. E., Minotti, G. and Giardina, B., Antioxidant properties of 2,3-Dimethoxy-5-methyl-6-(10-hydroxydecyl)-1,4-benzo- quinone (Idebenone)., Chem. Res. Toxicol., 11, 54-63, 1998.
20. Folkers, K. A. and Hoffman, C. H., Phosphates of 2,3- Dimethoxy-5- methyl hydroquinone., United States Patent Office. Patented 2962519, 1960.