簡易檢索 / 詳目顯示

研究生: 李耀明
Li, Yao-Ming
論文名稱: 以通用預測型卡曼濾波器錯誤偵測為基礎的通訊加密系統:進化規劃法
Universal Predictive Kalman Filter-based Fault Estimator Applied to Secure Communication: Evolutionary Programming Approach
指導教授: 蔡聖鴻
Tsai, Sheng-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 55
中文關鍵詞: 卡爾曼濾波器狀態故障進化規劃法數位再設計
外文關鍵詞: Predictive-Kalman observer, Fault detection and diagnosis, Evolutionary Programming, Performance recovery, Digital redesign, Secure communication
相關次數: 點閱:156下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非線性動態系統中,例如混沌系統通常應用於安全通信的加密,但它們可能無法提供高度的安全性。為了改善通訊的安全性,混沌系統需要增加其他的防護信號,但添加其他信號都可能導致原始系統發散。所以我們重新設計通信架構,使其可以增加額外的安全信號,並使系統不發散。本論文介紹了普遍狀態空間適應觀測器的誤差判斷/估計及高性能輸入追踪以解決取樣線性時變系統在驅動器/系統狀態有未預估到的衰變因素。還介紹了留數產生的架構和自動調節切換增益機制,使所提出的方法適用於驅動器和狀態故障的誤差檢測和診斷(FDD)以達成高效能的目標追蹤。然後,本論文提出了一種以進化演算法為基礎的適應性觀測器,以提高線性時變取樣資料系統的狀態估測,然後將所量測到的加密訊號應用在安全通訊的防護上,透過軌跡追踪模擬範例說明了所設計方法及其有效性和效率。

    Nonlinear dynamical systems such as chaotic systems are often applied to encryption on secure communications, but they may not provide a high-degree security. In order to improve the communication of security, chaotic system needs to be add other secure signal, but additional dimensions or signals may to cause signals to divergence. In this thesis, we redesign a communication scheme that could create secure signals with additional secure signals, and the scheme could keep system convergence. The universal state-space adaptive observer-based fault diagnosis/estimator and the high-performance tracker for the sampled-data linear time-varying system with unanticipated decay factors in actuators/system states are introduced in this thesis. A residual generation scheme and a mechanism for auto-tuning switched gain is also presented, so that the introduced methodology is applicable for the fault detection and diagnosis (FDD) for actuator and state faults to yield the high tracking performance recovery, then an evolutionary programming-based adaptive observer is presented in this thesis to improve the performance of state estimation of linear time-varying sampled-data systems. The estimator is then applied to the problem of secure communication. The effectiveness and efficiency of proposed design methodology are illustrated through tracking control simulation examples.

    1. Introduction...1 2. An Improved Kalman Filter-based Adaptive Observer for State Estimation and Actuator Fault Detection and Diagnosis...4 2.1 Adaptive observer...5 2.2 Kalman filter-based adaptive observer...5 2.3 An improved Kalman filter-based adaptive observer...10 3. Auto-tuning Switched Mechanism for Sampled-data Nonlinear Time-varying System Against Actuator and State Fault...17 3.1 Actuator fault detection and performance recovery of nonlinear systems...19 3.1.1 Optimal linearization of nonlinear systems...19 3.1.2 Actuator and state fault detection and performance recovery of nonlinear (slowly) time-varying systems with optimal linearization...21 3.2 Residual-generation-based auto-tuning switched mechanism for detection and diagnosis of actuator and state faults ...26 4. High-Performance Digital Redesign Tracker without Actuator/state Faults...31 4.1 Linear quadratic analog tracker design for healthy actuator/state...32 4.2 Digital redesign of the linear quadratic analog tracker for healthy state...33 4.3 Adaptive observer/tracker: An evolutionary programming approach...35 4.3.1 Quasi-random sequences (QRS)...36 4.3.2 Tuning observer gain of the digital redesigned adaptive tracker...36 5. Application on Secure Communication...41 5.1 Secure communication based on discrete-time system...42 5.2 Application of the adaptive fault estimator to secure communications...43 6. An Illustrative Example...46 7. Conclusion...51 Reference...52

    [1] K. J. and Wittenmark B.: “Computer Controlled Systems: Theory and Design.” (Prentice-Hall, 1997J. N. Juang.)
    [2] Bodson, M. and Groszkiewicz, J., “Multivariable adaptive algorithms for reconfigurable flight control,” IEEE Transactions on Control Systems Technology, vol. 5(2), pp. 217-229, 1997.
    [3] Chen S., Tao G., and Joshi S. M., “Adaptive actuator failure compensation control for MIMO systems,” International Journal of Control, vol. 77(15), pp. 1307-1317, 2004.
    [4] Edwards, C., Spurgeon, S. K., and Patton, R. J., “Sliding mode observers for fault detection and isolation,” Automatica, vol. 36(4), pp 541-553, 2000.
    [5] Fekih, A., Xu, H., and Chowdhury, F. N., “Neural networks based system identification techniques for model based fault detection of nonlinear systems,” International Journal of Innovative Computing Information and Control, vol. 3(5), pp. 1073-1085, 2007.
    [6] Guo S. M. and Peng Z. H., “An observer-based decentralized tracker for sampled-data systems: an evolutionary programming approach,” International Journal of General Systems, vol. 34(4), pp. 421-449, 2005.
    [7] Guo S. M., Shieh L. S., Chen G., and Lin C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transaction on Circuits and Systems-I, Fundamental Theory and Application, vol. 47(11), pp. 1557-1570, 2000.
    [8] Halton, J. H., “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals,” Numerische mathematik, vol. 2(1), pp. 84-90, 1960.
    [9] Huang, S. and Tan, K. K., “Fault detection and diagnosis based on modeling and estimation methods,” IEEE Transactions on Neural Networks, vol. 20(5), pp. 872-881, 2009.
    [10] Jiang, T., Khorasani, K., and Tafazoli, S., “Parameter estimation-based fault detection, isolation and recovery for nonlinear satellite models,” IEEE Transactions on Control Systems Technology, vol. 16(4), pp. 799-808, 2008.
    [11] Jiang, B., Staroswiecki, M., and Cocquempot, V., “Fault accommodation for nonlinear dynamic systems,” IEEE Transactions on Automatic Control, vol. 51(9),pp. 1578-1583, 2006.
    [12] Liu L., Kevin P. L., David A. C., and Sanjeev K. S., “Fault detection, diagnostics, and prognostics: software agent solutions,” IEEE Transactions on Vehicular Technology, pp. 1613-22, 2007.
    [13] Maybeck, P. S., “Multiple model adaptive algorithms for detecting and compensating sensor and actu¬ator/surface failures in aircraft flight control systems,” International Journal of Robust and Nonlinear Control, vol. 9(14), pp. 1051-1070, 1999.
    [14] Rodrigues, M., Theilliol, D., Aberkane, S., and Sauter, D., “Fault tolerant control design for polytopic lpv systems,” International Journal of Applied Mathematics and Computer Science, vol. 17(1), pp. 27-37, 2007.
    [15] Rodrigues, M. and Theilliol, D., Adam-Medina, M., and Sauter, D., “A fault detection and isolation scheme for industrial systems based on multiple operating models,” Control Engineering Practice, vol. 16(2), pp. 225-239, 2008.
    [16] Tang, X. D., Tao, G., and Joshi, S. M., “Adaptive actuator failure compensation for nonlinear mimo systems with an aircraft control application,” Automatica, vol. 43(11), pp. 1869-1883, 2007.
    [17] Teixeira M. C. M. and Zak S. H., “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transaction on Fuzzy System, pp. 133-142, 1997.
    [18] Tsai, J. S. H, Du, Y. Y, Zhuang, W. Z, Guo, S. M, Chen C. W., and Shieh L. S, “Optimal anti-windup digital redesign of multi-input multi-output control systems under input constraints, ” IET Control Theory Applications, vol. 5(21), pp. 447-464, 2011.
    [19] Tsai, J. S. H., Lin, M. H., Zheng, C. H., Guo, S. M., and Shieh, L. S., “Actuator fault detection and performance recovery with kalman filter-based adaptive observer,” International Journal of General Systems, vol. 36(4), pp. 375-398, 2007.
    [20] Tsai, J. S. H., Wei, C. L., Guo, S. M., Shieh, L. S., and Liu, C. R., “Ep-based adaptive tracker with observer and fault estimator for nonlinear time-varying sampled-data systems against actuator failures,” Jour¬nal of the Franklin Institute-engineering and Applied Mathematics 345(5), pp. 508-535, 2008.
    [21] Tsai, J. S. H., Yu, J. M., Canelon, J. I., and Shieh L. S., “Extended-Kalman-filter-based chaotic communication,” IMA Journal of Mathematical Control and Information, pp. 58-79, 2005
    [22] Van Der Corput, J. C., “Verteilungsfunktionen,” Proc. Kon Akad. Wet., Amsterdam, vol. 38 A13-A21, pp. 1058-1066, 1935.
    [23] Veillette, R., Medanic, J., and Perkins, W., “Design of reliable control systems,” IEEE Transactions on Auto¬matic Control, vol. 37(3), pp. 290-304, 1992.
    [24] Wu, N. E., Zhang, Y. M., and Zhou, K. M., “Detection, estimation, and accommodation of loss of control effec¬tiveness,” International Journal of Adaptive Control and Signal Processing, vol. 14(7), pp. 775-795, 2000.
    [25] Zhang, Q., “Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems,” IEEE Transactions on Automatic Control, vol. 47(3), pp. 525-529, 2002.
    [26] Zhang, Y. and Jiang, J., “Integrated active fault-tolerant control using imm approach,” IEEE Transactions on Aerospace and Electronic Systems, vol.37(4), pp. 1221-1235, 2001.
    [27] Zhang, K., Jiang, B., and Shi, P., “A new approach to observer-based fault-tolerant controller design for Takagi-¬sugeno fuzzy systems with state delay,” Circuits Systems and Signal Processing, vol. 28(5),pp. 679-697, 2009.
    [28] Zhang, X., Parisini, T., and Polycarpou, M., “Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach,” IEEE Transactions on Automatic Control, vol. 49(8), pp. 1259-1274, 2004.
    [29] Zhang, X., Polycarpou, M., and Parisini, T., “A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems,” IEEE Transactions on Automatic Control, vol. 47(4), pp. 576-593, 2002.

    下載圖示 校內:2022-12-30公開
    校外:2022-12-30公開
    QR CODE