研究生: |
施宇隆 Shih, Yu-Lung |
---|---|
論文名稱: |
三維磷化鎳/還原氧化石墨烯奈米複合物之製備與電容特性 Fabrication and capacitor performance of 3-dimensional nickel phosphide/reduced graphene oxide nanocomposites |
指導教授: |
陳東煌
Chen, Dong-Hwang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 磷化鎳 、還原氧化石墨烯 、電化學沉積法 、微波輔助合成法 、超級電容器 |
外文關鍵詞: | nickel phosphide, reduced graphene oxide, electrodeposition, microwave-assisted, supercapacitor |
相關次數: | 點閱:146 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關三維磷化鎳/還原氧化石墨烯奈米複合物之製備及電容性能之探討。第一部份以兩步電化學沉積法製備三維之磷化鎳/還原氧化石墨烯/氧化鎳/發泡鎳(NP/rGO/NiO/NF)複合物作為超級電容器之電極材料,首先將發泡鎳在0.1 M硫酸水溶液中以10伏特電壓進行電化學處理,在其表面垂直生長三維多孔性氧化鎳奈米片,所得氧化鎳/發泡鎳(NiO/NF)較未經處理之發泡鎳在2M氫氧化鉀電解液中有明顯較高的電容值。其次,在氧化石墨烯存在下進行發泡鎳的電化學處理,製備還原氧化石墨烯/氧化鎳/發泡鎳(rGO/NiO/NF)。結果顯示rGO可沉積在NiO/NF表面並進一步提高電容值,最佳電化學處理時間約為10分鐘。最後,在含有次磷酸鈉的電鍍液中,將磷化鎳電化學沉積在rGO/NiO/NF表面製得NP/rGO/NiO/NF。結果發現,Ni2.55P的沉積可導致更高的電容值。定電流充放電測試顯示,在電流密度7 mA/cm2下,最大的比電容值1648 F/g與7.98 F/cm2分別發生在電鍍時間10與30分鐘時,且經循環測試2000後,仍保有約80 %的比電容值。NP/rGO/NiO/NF良好的電化學性能顯示其確實可作為有潛力的超級電容器電極材料。
第二部分係在含GO、硫酸鎳與次磷酸鈉的乙二醇溶液中以微波輔助法製備磷化鎳/氫氧化鎳/還原氧化石墨烯(NP/Ni(OH)2/rGO)複合物作為超級電容器之電極材料,結果顯示磷化鎳與氫氧化鎳奈米粒子同時生成,且GO還原為rGO並有助於磷化鎳與氫氧化鎳奈米粒子的分散。將此複合物塗佈於發泡鎳上作為超級電容器的電極,在2M氫氧化鉀電解液中,其電容值在電流密度為5、7、10與15 mA/cm2時分別可達到1476、1393、1142與738 F/g,顯示以本製程製得之NP/Ni(OH)2/rGO奈米複合物確實可作為超級電容器之電極材料。
This thesis concerns the fabrication and capacitor performance of three-dimensional (3-D) nickel phosphide/reduced graphene oxide nanocomposites. In the first part, 3-D nickel phosphide/reduced graphene oxide/nickel oxide on nickel foam (NP/rGO/NiO/NF) has been fabricated as a supercapacitor electrode material via the two-step electrochemical deposition. At first, nickel foam was electrochemically treated at 10 V in 0.1 M sulfuric acid to grow vertically 3D porous NiO nanosheets on the surface of Ni foam. The resulting NiO/NF showed a significantly larger capacitance than the un-treated nickel foam in 2M KOH. Secondly, the rGO/NiO/NF was fabricated by the electrochemical treatment of nickel foam in the presence of graphene oxide (GO). It was found that rGO was deposited on the surface of NiO/NF and could further increase the capacitance. The optimal electrochemical treatment time was determined to be about 10 min. Finally, nickel phosphide was electrochemically deposited on the surface of rGO/NiO/NF in the sodium hypophosphite-based aqueous solution to yield the NP/rGO/NiO/NF. It was found that the deposition of Ni2.55P led to a much higher capacitance. Also, galvanostatic charge-discharge showed that the optimal specific capacitances of 7.98 F/cm2 and 1648 F/g at the current density of 7 mA/cm2 could be obtained at the electrochemical deposition time of 30 and 10 min, respectively. After 2000 cycles at a current density of 30 mA/cm2, about 80% of specific capacitance was retained. The good electrochemical performance revealed that the NP/rGO/NiO/NF indeed could be a potential supercapacitor electrode material.
In the second part, the nickel phosphide/nickel hydroxide/reduced graphene oxide (NP/Ni(OH)2/rGO) nanocomposite was fabricated as a supercapacitor electrode material via the microwave-assisted method in the ethylene glycol solution of GO, nickel sulfate and sodium hypophosphite. It was found that NP and Ni(OH)2 nanoparticles were formed simultaneously and GO was reduced to rGO whose presence was helpful for the dispersion of NP and Ni(OH)2 nanoparticles. By coating this nanocomposite on the nickel foam as the supercapacitor electrode, the specific capacitances of 1476, 1393, 1142 and 738 F/g were obtained at the current densities of 5, 7, 10 and 15 mA/cm2, respectively, in 2 M KOH electrolyte solution. This revealed that the NP/Ni(OH)2/rGO nanocomposite fabricated by the process developed in this work indeed could be used as the electrode material for supercapacitors.
1. 張立德,軍季美, 奈米材料和奈米結構, 科學出版社, 2001 年.
2. 楊乾信,池易楷,楊惇智, 科學發展, 2005 年 8 月, 451期, 48-53.
3. 張立德, 奈米材料, 化學工業出版社, 2000 年 11 月, 39-63.
4. M. J. Madou, Fundamentals of microfabrication: the science of miniaturization, 2nd ed., CRC Press 2002.
5. 王崇人, 科學發展, 2002 年, 354期, 48-51.
6. 張揚狀, 表面披覆幾丁聚醣之多功能磁性奈米載體的製備與應用, 國立成功大學化學工程研究所, 2005 年.
7. 林進山,陳美卿,陳靜紋, 微觀教學:探究奈米世界, 五南出版社, 2011 年 12 月.
8. 葉安義, 科學發展, 2004 年 9 月, 384期, 44-49.
9. T. Tsuzuki, Int. J. Nanotechnol., 2009, 6, 567-578.
10. H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl and R. E. Smalley, Nature, 1985, 318, 162-163.
11. S. Iijima, Nature, 1991, 354, 56-58.
12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306, 666-669.
13. C. Si, Z. M. Sun and F. Liu, Nanoscale, 2016, 8, 3207-3217.
14. A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6, 183-191.
15. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Science, 2008, 320, 1308-1308.
16. J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami and M. S. Fuhrer, Nat. Nanotechnol., 2008, 3, 206-209.
17. S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong and S. Iijima, Nat. Nanotechnol., 2010, 5, 574-578.
18. S. K. Banerjee, L. F. Register, E. Tutuc, D. Reddy and A. H. MacDonald, I.E.E.E. Electron Device Lett., 2009, 30, 158-160.
19. Q. Q. Ke, Y. Q. Liu, H. J. Liu, Y. Zhang, Y. T. Hu and J. Wang, Rsc. Adv., 2014, 4, 26398-26406.
20. R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-Zadeh and W. Wlodarski, Chem. Phys. Lett., 2009, 467, 344-347.
21. G. B. Huang, C. C. Zhang, Y. Long, J. Wynn, Y. Liu, W. Wang and J. P. Gao, Nanotechnology, 2013, 24.
22. 蘇清源, 石墨烯氧化物之特性與應用前景, 物理雙月刊, 2011 年 4 月.
23. P. Mukhopadhyay and R. K. Gupta, Graphite, graphene, and their polymer nanocomposites, CRC Press, Boca Raton, FL, 2013.
24. J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen and P. Peumans, Appl. Phys. Lett., 2008, 92.
25. M. G. Chung, D. H. Kim, D. K. Seo, T. Kim, H. U. Im, H. M. Lee, J. B. Yoo, S. H. Hong, T. J. Kang and Y. H. Kim, Sens. Actuators B Chem., 2012, 169, 387-392.
26. J. Wang, X. B. Zhang, Z. L. Wang, L. M. Wang and Y. Zhang, Energ. Environ. Sci., 2012, 5, 6885-6888.
27. Y. Zhang, T. R. Nayak, H. Hong and W. B. Cai, Nanoscale, 2012, 4, 3833-3842.
28. M. Li, X. J. Yang, J. S. Ren, K. G. Qu and X. G. Qu, Adv. Mater., 2012, 24, 1722-1728.
29. A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. P. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. L. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander and J. Kinaret, Nanoscale, 2015, 7, 4598-4810.
30. P. Avouris and C. Dimitrakopoulos, Mater. Today, 2012, 15, 86-97.
31. P. Sutter, Nat. Mater., 2009, 8, 171-172.
32. H. Tetlow, J. P. de Boer, I. J. Ford, D. D. Vvedensky, J. Coraux and L. Kantorovich, Phys. Rep., 2014, 542, 195-295.
33. A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett., 2009, 9, 30-35.
34. 陳姿吟,李連忠, 以化學氣相沉積法成長大面積之石墨烯, 中央研究院 週報, 1342期, 5-6.
35. J. Chen, B. W. Yao, C. Li and G. Q. Shi, Carbon, 2013, 64, 225-229.
36. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339-1339.
37. M. Fu, Q. Z. Jiao, Y. Zhao and H. S. Li, J. Mater. Chem. A, 2014, 2, 735-744.
38. F. S. Jamie H Warner, Alicja Bachmatiuk and Mark H Rümmeli, Graphene: fundamentals and emergent applications, Elsevier 2013.
39. C. Lee, X. D. Wei, J. W. Kysar and J. Hone, Science, 2008, 321, 385-388.
40. F. Memarian, A. Fereidoon and M. D. Ganji, Superlattice Microst., 2015, 85, 348-356.
41. E. Pop, D. Mann, Q. Wang, K. E. Goodson and H. J. Dai, Nano Lett., 2006, 6, 96-100.
42. J. F. Shen, M. Shi, N. Li, B. Yan, H. W. Ma, Y. Z. Hu and M. X. Ye, Nano Res., 2010, 3, 339-349.
43. L. H. Li, Y. Wu, J. Lu, C. Y. Nan and Y. D. Li, Chem. Commun., 2013, 49, 7486-7488.
44. W. Li, F. Wang, S. S. Feng, J. X. Wang, Z. K. Sun, B. Li, Y. H. Li, J. P. Yang, A. A. Elzatahry, Y. Y. Xia and D. Y. Zhao, J. Am. Chem. Soc., 2013, 135, 18300-18303.
45. A. R. Siamaki, A. E. S. Khder, V. Abdelsayed, M. S. El-Shall and B. F. Gupton, J. Catal., 2011, 279, 1-11.
46. Y. Q. Zhao, D. D. Zhao, P. Y. Tang, Y. M. Wang, C. L. Xu and H. L. Li, Mater. Lett., 2012, 76, 127-130.
47. S. J. He and W. Chen, Nanoscale, 2015, 7, 6957-6990.
48. M. Winter and R. J. Brodd, Chem. Rev., 2004, 104, 4245-4269.
49. U. Patil, S. C. Lee, S. Kulkarni, J. S. Sohn, M. S. Nam, S. Han and S. C. Jun, Nanoscale, 2015, 7, 6999-7021.
50. J. Y. Ji, Y. Li, W. C. Peng, G. L. Zhang, F. B. Zhang and X. B. Fan, Adv. Mater., 2015, 27, 5264-5279.
51. P. Sharma and T. S. Bhatti, Energ. Convers. Manage., 2010, 51, 2901-2912.
52. K. Jost, G. Dion and Y. Gogotsi, J. Mater. Chem. A, 2014, 2, 10776-10787.
53. B. E. Conway, V. Birss and J. Wojtowicz, J. Power Sources, 1997, 66, 1-14.
54. G. A. Snook, P. Kao and A. S. Best, J. Power Sources, 2011, 196, 1-12.
55. D. Chen, Q. F. Wang, R. M. Wang and G. Z. Shen, J. Mater. Chem. A, 2015, 3, 10158-10173.
56. M. J. Zhi, C. C. Xiang, J. T. Li, M. Li and N. Q. Wu, Nanoscale, 2013, 5, 72-88.
57. D. F. Sun, X. B. Yan, J. W. Lang and Q. J. Xue, J. Power Sources, 2013, 222, 52-58.
58. C. Meng, C. Liu, L. Chen, C. Hu and S. Fan, Nano Lett., 2010, 10, 4025-4031.
59. C. G. Liu, Z. N. Yu, D. Neff, A. Zhamu and B. Z. Jang, Nano Lett., 2010, 10, 4863-4868.
60. Y. Wang, Z. Q. Shi, Y. Huang, Y. F. Ma, C. Y. Wang, M. M. Chen and Y. S. Chen, J. Phys. Chem. C, 2009, 113, 13103-13107.
61. V. Gupta, T. Kusahara, H. Toyama, S. Gupta and N. Miura, Electrochem. Commun., 2007, 9, 2315-2319.
62. T. Cottineau, M. Toupin, T. Delahaye, T. Brousse and D. Belanger, Appl. Phys. A Mater. Sci. Process, 2006, 82, 599-606.
63. B. E. Conway, J. Electrochem. Soc., 1991, 138, 1539-1548.
64. C. C. Hu, K. H. Chang and C. C. Wang, Electrochim. Acta, 2007, 52, 4411-4418.
65. K. H. Chang and C. C. Hu, Electrochem. Solid. St., 2004, 7, A466-A469.
66. M. Min, K. Machida, J. H. Jang and K. Naoi, J. Electrochem. Soc., 2006, 153, A334-A338.
67. C. H. Chen, D. S. Tsai, W. H. Chung, Y. D. Chiou, K. Y. Lee and Y. S. Huang, Nanotechnology, 2012, 23.
68. S. Ghasemi, R. Hosseinzadeh and M. Jafari, Int. J. Hydrogen. Energ., 2015, 40, 1037-1046.
69. H. L. Li, Y. He, V. Pavlinek, Q. L. Cheng, P. Saha and C. Z. Li, J. Mater. Chem. A, 2015, 3, 17165-17171.
70. R. S. Jayashree and P. V. Kamath, J. Mater. Chem., 1999, 9, 961-963.
71. C. M. Zhao, X. Wang, S. M. Wang, Y. Y. Wang, Y. X. Zhao and W. T. Zheng, Int. J. Hydrogen. Energ., 2012, 37, 11846-11852.
72. J. X. Li, M. Yang, J. P. Wei and Z. Zhou, Nanoscale, 2012, 4, 4498-4503.
73. X. Yu, B. Lu and Z. Xu, Adv Mater, 2014, 26, 1044-1051.
74. Q. T. Qu, Y. S. Zhu, X. W. Gao and Y. P. Wu, Adv. Energy Mater., 2012, 2, 950-955.
75. S. D. Perera, B. Patel, N. Nijem, K. Roodenko, O. Seitz, J. P. Ferraris, Y. J. Chabal and K. J. Balkus, Adv. Energy Mater., 2011, 1, 936-945.
76. J. W. Lee, T. Ahn, J. H. Kim, J. M. Ko and J. D. Kim, Electrochim. Acta, 2011, 56, 4849-4857.
77. H. L. Wang, H. S. Casalongue, Y. Y. Liang and H. J. Dai, J. Am. Chem. Soc., 2010, 132, 7472-7477.
78. Y. F. Bu, S. Wang, H. L. Jin, W. M. Zhang, J. J. Lin and J. C. Wang, J. Electrochem. Soc., 2012, 159, A990-A994.
79. Q. Q. Tang, M. Q. Sun, S. M. Yu and G. C. Wang, Electrochim. Acta, 2014, 125, 488-496.
80. S. J. He and W. Chen, J. Power Sources, 2014, 262, 391-400.
81. S. S. Wu, W. F. Chen and L. F. Yan, J. Mater. Chem. A, 2014, 2, 2765-2772.
82. S. Zhu, H. Zhang, P. Chen, L. H. Nie, C. H. Li and S. K. Li, J. Mater. Chem. A, 2015, 3, 1540-1548.
83. Y. M. Sun, Y. B. Cheng, K. He, A. J. Zhou and H. W. Duan, Rsc. Adv., 2015, 5, 10178-10186.
84. H. C. Gao, F. Xiao, C. B. Ching and H. W. Duan, Acs. Appl. Mater. Inter., 2012, 4, 2801-2810.
85. Y. Jin, H. Y. Chen, M. H. Chen, N. Liu and Q. W. Li, Acs. Appl. Mater. Inter., 2013, 5, 3408-3416.
86. X. H. Xia, J. P. Tu, Y. Q. Zhang, Y. J. Mai, X. L. Wang, C. D. Gu and X. B. Zhao, J. Phys. Chem. C, 2011, 115, 22662-22668.
87. A. Panneerselvam, M. A. Malik, M. Afzaal, P. O'Brien and M. Helliwellt, J. Am. Chem. Soc., 2008, 130, 2420-2421.
88. M. S. Wu and J. F. Wu, Chem. Commun., 2013, 49, 10971-10973.
89. Y. Y. Dou, G. R. Li, J. Song and X. P. Gao, Phys. Chem. Chem. Phys., 2012, 14, 1339-1342.
90. Y. M. Shi, Y. Xu, S. F. Zhuo, J. F. Zhang and B. Zhang, Acs. Appl. Mater. Inter., 2015, 7, 2376-2384.
91. A. Han, S. Jin, H. L. Chen, H. X. Ji, Z. J. Sun and P. W. Du, J. Mater. Chem. A, 2015, 3, 1941-1946.
92. E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis and R. E. Schaak, J. Am. Chem. Soc., 2013, 135, 9267-9270.
93. L. Monconduit, Nanosci. Nanotech. Lett., 2012, 4, 118-123.
94. W. M. Du, S. H. Wei, K. K. Zhou, J. J. Guo, H. Pang and X. F. Qian, Mater. Res. Bull., 2015, 61, 333-339.
95. K. Zhou, W. J. Zhou, L. J. Yang, J. Lu, S. Cheng, W. J. Mai, Z. H. Tang, L. G. Li and S. W. Chen, Adv. Funct. Mater., 2015, 25, 7530-7538.
96. J. Y. Xiang, X. L. Wang, X. H. Xia, J. Zhong and J. P. Tu, J. Alloy. Compd., 2011, 509, 157-160.
97. Y. Lu, J. P. Tu, Q. Q. Xiong, J. Y. Xiang, Y. J. Mai, J. Zhang, Y. Q. Qiao, X. L. Wang, C. D. Gu and S. X. Mao, Adv. Funct. Mater., 2012, 22, 3927-3935.
98. Y. Lu, J. P. Tu, J. Y. Xiang, X. L. Wang, J. Zhang, Y. J. Mai and S. X. Mao, J. Phys. Chem. C, 2011, 115, 23760-23767.
99. P. C. Chen, G. Shen, S. Sukcharoenchoke and C. Zhou, Appl. Phys. Lett., 2009, 94.
100. X. Zhao, C. Johnston and P. S. Grant, J. Mater. Chem., 2009, 19, 8755-8760.
101. Z. Q. Niu, W. Y. Zhou, X. D. Chen, J. Chen and S. S. Xie, Adv. Mater., 2015, 27, 6002-6008.
102. H. L. Yan, D. Y. Zhang, J. Y. Xu, Y. Lu, Y. X. Liu, K. W. Qiu, Y. H. Zhang and Y. S. Luo, Nanoscale Res. Lett., 2014, 9.
103. X. H. Xiong, D. Ding, D. C. Chen, G. Waller, Y. F. Bu, Z. X. Wang and M. L. Liu, Nano Energy, 2015, 11, 154-161.
104. K. Krishnamoorthy, G. K. Veerasubramani, S. Radhakrishnan and S. J. Kim, Chem. Eng. J., 2014, 251, 116-122.
105. L. T. Romankiw, Electrochim. Acta, 1997, 42, 2985-3005.
106. A. Gilewska, Electrolysis and Electroplating, Education, Mar 20, 2011.
107. J. Heinze, Angew. Chem. Int. Ed. Engl., 1984, 23, 831-847.
108. D. M. W. D. M. Skoog, F. J. Holler, S. R. Crouch, Fundamentals of analytical chemistry, Thomson Brooks/Cole., 2004.
109. M. L. Sisodia, Microwaves : introduction to circuits, devices and antennas, New Age International, 2007, 1.
110. M. Al-Harahsheh and S. W. Kingman, Hydrometallurgy, 2004, 73, 189-203.
111. P. Rattanadecho and N. Makul, Dry. Technol., 2016, 34, 1-38.
112. S. M. Chen, R. Ramachandran, V. Mani and R. Saraswathi, Int. J. Electrochem. Sc., 2014, 9, 4072-4085.
113. R. K. Jain, H. C. Gaur and B. J. Welch, J. Electroanal. Chem., 1977, 79, 211-236.
114. J. R. E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications, John Wiley & Sons., 2005.
115. E. P. Randviir and C. E. Banks, Anal. Methods-UK, 2013, 5, 1098-1115.
116. B. W. Zhang, J. S. Wu, X. G. Li, H. Liu, B. L. Yadian, R. V. Ramanujan, K. Zhou, R. B. Wu, S. J. Hao and Y. Z. Huang, J. Phys. Chem. C, 2014, 118, 9073-9077.