| 研究生: |
俞國靖 Yu, Kuo-Ching |
|---|---|
| 論文名稱: |
旋轉梯型管內衝擊噴柱列熱傳實驗研究 Experimental heat transfer of impinging jet row in rotating trapezoidal channel |
| 指導教授: |
張始偉
Chang, Shyy-Woei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 旋轉通道 、噴柱陣列 、梯形通道 、渦輪動葉冷卻 |
| 外文關鍵詞: | Rotating Channel, Impinging Jet Row, Trapezoidal Channel, Gas Turbine Rotor Blade Cooling. |
| 相關次數: | 點閱:123 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對燃氣渦輪動葉内冷卻流道熱傳強化需求,探討梯型通道內衝擊噴柱列表面,設置於傾側角為45度之旋轉管道,其迎風面,衝擊面與背風面之熱傳性能。內設衝擊噴柱列,旋轉管道熱傳係數,係利用穩態紅外線檢測技術量测,實驗參數範圍為7500 ≤ 雷諾數(Re) ≤ 17500,0 ≤ Ro ≤ 0.3 ,0≤ 浮力數(Bu) ≤0.0883。
研究顯示,靜態管道之熱傳係數(Nu0)於7500≤ 雷諾數 ≤17500之範圍可提升至平滑圓管流域熱傳(Nu∞)之3.73至3.95倍,靜態管道之范寧摩擦係數( f0 ) 於7500 ≤ 雷諾數 ≤17500之範圍可提升至平滑圓管摩擦係數(f∞)之15.68至23.79倍。靜態管道之熱性能係數(TPF ) 於7500 ≤ 雷諾數 ≤17500之範圍可提升至0.96至1.07。旋轉管道迎風面,衝擊面與背風面與靜態管道相比之平均Nu/Nu0數,隨旋轉數增加先降低而後持續提升,其範圍分別為0.93至1.24倍、1.05至1.15倍與1.44至1.51倍。旋轉管道迎風面,衝擊面與背風面全展流域之平均紐賽數皆隨浮力數持續降低。
旋轉管道與靜態管道之范寧摩擦係數隨雷諾數增加而先降低而後持續提升 ,但與靜態管道之f/f0比值,卻隨雷諾數增加而持續下降至0.91倍。利用實驗結果推導靜態與旋轉通道熱傳及摩擦實驗公式,供CFD模擬或其他相關工程應用。
Drive by the requirement for the heat transfer enhancement of the internal coolant channel of a gas turbine rotor blade, the present study investigates the heat transfer performances of the leading, impinging and trailing endwalls for the rotating trapezoidal channel with the impinging jet-row at the channel orientation angle of 45 degrees. The heat transfer coefficients of the present rotating channel with the imping jet-row were measured using the steady-state infrared thermography method at the parametric conditions defined by Reynolds number (Re), rotation number (Ro), and buoyancy number (Bu) in the respective ranges of 5000<Re<17500, 0<Ro<0.3, 0<Bu<0.0883.
For the non-rotating channel at 7500 ≤ Re ≤17500, the present area-average Nusselt numbers (Nu0) were elevated to 3.73 to 3.95 times of the smooth tubular flow (Nu∞) references; and the Fanning friction coefficients (f0) were raised to 15.68 to 23.79 times of the smooth tubular flow (f∞); together to cause the thermal performance factors (TPF) in the range of 0.96-1.07. Acting by the coupled Coriolis-force and buoyancy effects, the rotating-to-static area-averaged Nusselt number ratios (Nu/Nu0) over the leading, apex and trailing walls were initially reduced and followed by the subsequent recoveries as Ro increased from 0 to 0.3, leading to their Nu/Nu0 ratios in the respective ranges of 0.93-1.24, 1.05-1.15 and 1.44-1.51.
Over the leading, apex and trailing walls of the present rotating channel, all the area-averaged Nusselt numbers were decreased by increasing buoyancy number.
For both the present static and rotating channels, the Fanning friction factors were initially reduced and then increased as Reynolds number increased. But the ratios of the rotating-to-static channel Fanning friction factors (f/f0) were reduced to 0.91 by increasing Reynolds number.
Two sets of empirical correlations evaluating the regionally averaged Nusselt numbers and the channel averaged Fanning friction factors were devised using the present sets of experimental data for CFD validations and the relevant engineering applications.
[1] D.E. Metzger, T. Yamashita, C.W. Jenkins, Impingement cooling of concave surfaces with lines of circular air jets, ASME Journal of Engineering Power 93 (1969) 149–155.
[2] L.W. Florschetz, C.R. Truman, D.E. Metzger, Streamwise flow and heat transfer distribution for jet impingement with crossflow, ASME Journal of Heat Transfer 103 (1981) 337–342.
[3] D.E. Metzger, and R.S. Bunker, Local heat transfer in internally cooled turbine airfoil leading edge regions: Part I—Impingement cooling without film coolant extraction, ASME Journal of Turbomachinery 112 (1990) 451–458.
[4] Y. Huang, S.V. Ekkad, J.C. Han, Heat transfer distributions under an array of orthogonal impinging jets, AIAA Journal of Thermophysics and Heat Transfer 12 (1998) 73–79.
[5] R.S. Bunker, and D. E. Metzger, Local heat transfer in internally cooled turbine airfoil leading edge regions: Part II—Impingement cooling with film coolant extraction, ASME Journal of Turbomachinery 112 (1990) 459–456.
[6] S.V. Ekkad, Y. Huang, J.C. Han, Impingement heat transfer on a target plate with film holes, AIAA Journal of Thermophysics and Heat Transfer 13 (1999) 522– 528.
[7] M.E. Taslim, Y. Pan, S.D. Spring, An experimental study of impingement on roughened airfoil leading-walls with film holes, ASME Journal of Turbomachinery 123 (2001)766–773.
[8] M. E. Taslim K. Bakhtari H. Liu, Experimental and numerical investigation of impingement on a rib-roughened leading-edge wall, ASME Journal of Turbomachinery 125 (2003) 682–691.
[9] D. Massini, E. Burberi , C. Carcasci, L. Cocchi, B. Facchini, A. Armellini, L. Tarchi, S. Zecchi, Heat transfer measurements in a leading edge geometry with racetrack holes and film cooling extraction, ASME Journal of Turbomachinery 135 (2013) 031020 1–9.
[10] E.L. Martin and L. M. Wright, Impingement Heat Transfer Enhancement on a Cylindrical, Leading Edge Model With Varying Jet Temperatures, ASME Journal of Turbomachinery 135 (2013) 031021 1–8.
[11] K.V. Akella, and J.C. Han, Impingement cooling in rotating two-pass rectangular channels, AIAA Journal of Thermophysics and heat transfer 12 (1998) 582–588.
[12] K.V. Akella, and J.C. Han, Impingement cooling in rotating two-pass rectangular channels with ribbed walls, AIAA Journal of Thermophysics and heat transfer 13 (1999) 364–371.
[13] S.-S. Hsieh, J.-T. Huang, C.-F. Liu, Local heat transfer in a rotating square channel with jet impingement, ASME Journal of Heat Transfer 121 (1999) 811–818.
[14] J. A. Parsons, J. C. Han, C. P. Lee, Rotation effect on jet impingement heat transfer in smooth rectangular channels with four heated walls and radially outward crossflow, ASME Journal of Turbomachinery 120 (1998) 79–85.
[15] J. A. Parsons and J.C. Han, Jet-impingement heat transfer in rotating channels with staggered extraction flow, AIAA Journal of Thermophysics and heat transfer 19 (2005) 156–162.
[16] H. Iacovides, D. Kounadis, B.E. Launder, J. Li, Z. Xu, Experimental study of the flow and thermal development of a row of cooling jets impinging on a rotating concave surface, ASME Journal of Turbomachinery 127 (2005) 222–229.
[17] S. K. Hong, D. H. Lee, H. H. Cho, Effect of jet direction on heat/mass transfer of rotating impingement jet, Applied Thermal Engineering 29 (2009) 2914–2920.
[18] J. A. Lamont, S. V. Ekkad, M. A. Alvin, Effects of rotation on heat transfer for a single row jet impingement array with crossflow, ASME Journal of Heat Transfer 134 (2012) 082202 1–12.
[19] D. Massini, E. Burberi , C. Carcasci, L. Cocchi, B. Facchini, A. Armellini, L. Casarsa, L. Furlani, Effect of rotation on a gas turbine blade internal cooling system: experimental investigation, ASME Journal of Engineering for Gas Turbines and Power 139 (2017) 101902 1–13.
[20] P. Singh and S. V. Ekkad, Detailed heat transfer measurements of jet impingement on dimpled target surface under rotation, ASME Journal of Thermal Science and Engineering Applications 10 (2018) 031006 1–14.
[21] S.W. Chang, T.-M. Liou, Y. Po, Yu, Coriolis and rotating buoyancy effect on detailed heat transfer distributions in a two-pass square channel roughened by 45° ribs at high rotation numbers 53 (2012) 1349–1363.
[22] B.V. Johnson, J.H. Wagner, G.D. Steuber, F.C. Yeh, Heat transfer in rotating serpentine passages with trip skewed to the flow, ASME Journal of Turbomachinery 116 (1994) 113–123.
[23] S.W. Chang, W.-L. Cai, H.-D. Shen, K.-C. Yu, Uncoupling Coriolis force and rotating buoyancy effects on full-field heat transfer properties of a rotating channel, Journal of Visualized Experiments, (2018) In-press.
[24] F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of the tubular type, University of California Publications on Engineering 2 (1930) 433–461.
[25] P.R.H. Blasius, Das Aehnlichkeitsgesetz bei Reibungsvorgangen in Flüssigkeiten, Mitteilungen uber Forschungsarbeuten auf dem Gebiete des Ingenieurwesens 131 (1913) 1–41.
[26] D.L. Gee, R.L. Webb, Forced convection heat transfer in helically rib-roughened tubes, International Journal of Heat and Mass Transfer 23 (1980) 1127–1136.
[27] J.H. Kim, T.W. Simon, R.Viskanta, Journal of heat transfer policy on reporting uncertainties in experimental measurements and results, ASME J. Heat Transfer 115 (1993) 5–6.
[28] Ernesto Benini ,Advances in Gas Turbine Technology, Edition: 1st, Chapter: 1, Publisher: Intech, pp.3-24
[29] Han, J. C., and Huh, M., 2009, “Recent Studies in Turbine Blade Internal Cooling,” Proceedings of the International Symposium on Heat Transfer in Gas Turbine Systems, Antalya, Turkey.
[30]Jeff Dahl, CC BY-SA 4.0 https://commons.wikimedia.org/w/index.php?curid=3235265