簡易檢索 / 詳目顯示

研究生: 林義書
Lin, Yi-shu
論文名稱: 可並接擴充之高功率CMOS射頻功率模組
High Power CMOS RF Amplifier Module Expandable in parallel
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 89
中文關鍵詞: 射頻功率放大器
外文關鍵詞: WiMAX, Power Amplifier
相關次數: 點閱:54下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為CMOS功率放大器的研究。在射頻傳送機前端電路中,功率放大器是一很重要的元件,其將來自基頻的訊號依應用系統需求來放大,並提供給天線傳送出去。
    在現今的無線通訊系統,積體化一直是長久被討論的方向。使用CMOS製程最大的優點為以較低的成本並可以完整的與後端基頻系統電路整合。設計的電路使用在Mobile WiMAX 802.16e,其傳輸頻寬為3400MHz到3700MHz。
    在本篇論文中,將提出之CMOS功率放大器設計皆利用推挽式放大器差動技術抑制偶次諧波,並使用電晶體基板偏壓來抑制電晶體基板效應,使得功率放大器的線性度及效率獲得提升。而利用不同的功率結合技術提出包含以下三個電路。
    在3.5 GHz全整合式變壓器功率放大器設計中,設計晶片式變壓器作為電路輸入端的差動訊號產生及輸出功率結合,其最大功率輸出23.6 dBm時有28%的PAE,線性輸出功率(Pout @ P1dB)在 20.5 dBm時有17%的PAE,功率增益為(Gain)11.6 dB,輸出三次交互調變點(OIP3)為32dBm。
    在3.5 GHz採用並聯放大技術功率器設計中,沿用變壓器作為電路輸入端的差動訊號產生,於輸出部分採用lattice-balun技術作為功率結合,其最大功率輸出25 dBm時有41.8%的PAE,線性輸出功率(Pout @ P1dB)在 22.4 dBm時有30%的PAE,功率增益為(Gain)11.6 dB,輸出三次交互調變點(OIP3)為30dBm。
    最後使用兩階功率放大模組並模擬送入WiMAX訊號的狀態驗證,完成達到符合Mobile WiMAX應用的高功率CMOS射頻功率放大器設計。其線性輸出功率在28.4dBm時33.6%的PAE。
    本論文中的電路設計是使用TSMC 0.18 um CMOS製程model並搭配Aglient ADS軟體進行電路模擬及電磁分析,透過CIC下線而完成晶片的製作,最後於CIC進行相關量測及驗證。

    In this thesis, high-power CMOS power amplifier modules are investigated. In radio-frequency (RF) transmitter front-end, power amplifiers are an important component. Power amplifiers can amplify base-band signals and then transport them into an antenna for wireless communication system.
    The integration of wireless communication systems has taken a long journey into the modern world. The feature of CMOS processing technology is fully integrated with base-band system and the cost is cheaper. It is designed to operate in the application of Mobile WiMAX 802.16e band, which has the operation frequency ranging from 2400MHz to 2700MHz.
    In this thesis, a differential push-pull topology is used to suppress even-order harmonics, and an adopting substrate bias topology can greatly reduce the body effect, the efficiency and linearization can be improved. We design three circuits of CMOS power amplifier with differ power combing topology.
    In the first design, 3.5GHz transformer-integrated RF power amplifier, we designed the on-chip transformer to split input signal and combine output signal. The circuit is capable of delivering 23.6dBm of maximum output power with an 28% power-added efficiency and 20.5dBm of linear output power with 17% PAE. The power gain is 11.6dB, and the output third-order intercept point is 32dBm.
    In the second design, a power module is like as the first circuit except that the output on-chip transformer is replaced by LC resonators. The circuit is capable of delivering 25dBm of maximum output power with an 41.8% power-added efficiency and 22.4dBm of linear output power with 30% PAE. The power gain is 11.6dB, and the output third-order intercept point is 30dBm.
    At last, we have simulated and tested high-power CMOS RF power amplifier by combining with two power modules in parallel for mobile WiMAX application. This power amplifier is capable of delivering 28.4dBm of linear output power with 33.6% power-added efficiency and fit in with specification of mobile WiMAX.
    With EM simulation of Aglient ADS, the influence of lines in the layout can be considered. The circuits are implemented by TSMC 0.18um CMOS process. These chips have also been fabricated and measured by the support of CIC in Taiwan.

    Table of Contents I List of Figures V List of Tables X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis organization 3 Chapter 2 Wireless Communication Systems 4 2.1 OFDM 4 2.2 WiMAX 6 2.2.1 The Specification of WiMAX for power amplifier 9 Chapter 3 Power Amplifier Design Criteria 10 3.1 Scattering Parameters 10 3.2 Stability Concerns 12 3.3 Power Gain 14 3.4 Efficiency of Power Amplifier 14 3.5 Conjugate match and power match 15 3.6 Distortion and Linearity 16 3.6.1 Harmonic Distortion 17 3.6.2 1-dB Compression Point 18 3.6.3 Third-order intercept point 19 3.6.4 Relationship between P1dB and IIP3 23 3.6.5 Adjacent Channel Power Ratio (ACPR) 23 3.6.6 Transmit spectral mask 24 3.6.7 Error Vector Magnitude (EVM) 25 Chapter 4 Design of WiMAX Mobile Power Amplifier 27 4.1 Load line theory 28 4.2 Classes of Operation in RF Power Amplifiers 29 4.3 Load-Pull Topology 40 4.4 Differential Phase Splitter (Balun) 42 4.4.1 On-Chip Transformer (Balun) 42 4.4.2 Lumped Element Lattice-Balun 46 4.5 Differential Push-Pull Topology 48 4.6 The Body Effect (Substrate Bias Effect) 50 4.7 3.5GHz Transformer Integrated RF Power Amplifier Design 52 4.7.1 Circuit Schematic 52 4.7.2 Simulation Results 55 4.7.2.1 S-parameter Simulation 55 4.7.2.2 Output Power Simulation 57 4.7.3 Layout and Fabrication 60 4.7.4 Measurement Results 61 4.7.4.1 S-parameter Measurement 61 4.7.4.2 Output Power Measurement 64 4.7.5 Summary 65 4.8 3.5GHz 23dB(200mW) CMOS Power Module Design 66 4.8.1 Circuit Schematic 66 4.8.2 Simulation Results 67 4.8.2.1 S-parameter Simulation 67 4.8.2.2 Output Power Simulation 69 4.8.3 Layout and Fabrication 72 4.8.4 Measurement Results 73 4.8.4.1 S-parameter Measurement 73 4.8.4.2 Output Power Measurement 75 4.8.5 Summary 76 4.9 High Power CMOS RF Amplifier Module for WiMAX Application 77 4.9.1 Simulation Results 78 4.9.1.1 S-parameter Simulation 78 4.9.1.2 Output Power Simulation 79 4.9.1.3 WiMAX Application test Simulation 80 4.9.2 Summary 83 Chapter 5 Conclusions and Future Work 84 5.1 Conclusions 84 5.2 Future Work 85 References 86

    [1] Intel (2006). Orthogonal Frequency Division Multiplexing. <http://www.intel.com/netcomms/technologies/wimax/303787.pdf>.
    [2] J. Heiskala & J. Terry (2001). OFDM Wireless LANs: A Theoretical and Practical Guide. Sams, 1st edition. ISBN 0672321572.
    [3] WiMAX Forum (2006). <http://www.wimaxforum.org/>.
    [4] Intel (2006). Understanding Wi-Fi and WiMAX as Metro-access
    Solutions. <http://www.intel.com/netcomms/technologies/wimax/304471.pdf>.
    [5] Yijun Zhou; Chee Piew Yoong; Leong Siew Weng; Yin Jee Khoi; Chia Yan Wah, M.; Ang Chai Moy, K.; Wee Tue Fatt, D.; “A 5 GHz dual-mode WiMAX/WLAN direct-conversion receiver,” Proceeding of IEEE International Symposium on Circuits and Systems, ISCAS, pp. 3053-3056, 21-24 May, 2006
    [6] Ping Li; DiCarlo, P.;"Overview of WiMAX system and related power amplifier design"; ICSICT 2008. 9th International Conference on 20-23 Oct. 2008 Page(s):1361 - 1364
    [7] T. H. Lee, The design of CMOS radio-frequency integrated circuits, 2nd ed. Cambridge, UK ; New York: Cambridge University Press, 2004.
    [8] B. Razavi, RF microelectronics. Upper Saddle River, NJ: Prentice Hall, 1998.
    [9] D. M. Pozar, Microwave and RF wireless systems. New York: John Wiley, 2001.
    [10] C. H. Liu, "Design of Radio Frequency Amplifiers," Microelectronics Department, National Cheng Kung University, 2006.
    [11] G. Liu, "Fully Integrated CMOS Power Amplifier," EECS Department, University of California, Berkeley, 2006.
    [12] J.Vuolevi,“Analysis, Measurement and Cancellation of the Bandwidth and Amplitude Dependence of Intermodulation Distortion In RF Power Amplifiers”.
    [13] G. Gonzalez, Microwave transistor amplifiers : analysis and design.
    Englewood Cliffs, N.J.: Prentice-Hall, 1984.
    [14] "Draft Amendment to IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Multihop Relay Specification," IEEE Unapproved Draft Std P802.16j/D5, Jun 2008, 2008.
    [15] "Draft Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems ((Revision of IEEE Std 802.16-2004 and consolidates material from IEEE Std 802.16e-2005, IEEE Std 802.16-2004/Cor1-2005, IEEE Std 802.16f-2005 and IEEE Std 802.16g-2007)," IEEE Unapproved Draft Std P802.16Rev2/D3 Feb 2008, 2008.
    [16] C.-W. Tasi, "Silicon Germanium Bipolar Transistor Radio Frequency Power Amplifier," EE Department,, National Chung Cheng University, 2007.
    [17] R. Gilmore, L. Besser, “Practical RF Circuit Design for Modern Wireless Systems Vol. 2: Active Circuits and Systems”, Artech House, USA, 2006.
    [18] T. H. Lee, The design of CMOS radio-frequency integrated circuits, 2nd ed. Cambridge, UK ; New York: Cambridge University Press, 2004.
    [19] G. Gonzalez, Microwave transistor amplifiers : analysis and design. Englewood Cliffs, N.J.: Prentice-Hall, 1984.
    [20] B. Razavi, Design of analog CMOS integrated circuits. Boston, MA: McGraw-Hill, 2001.
    [21] U. L. Rohde, D. P. Newkirk, and Books24x7 Inc., "RF/microwave circuit design for wireless applications," New York: John Wiley, 2000.
    [22] A. Shirvani and B. A. Wooley, Design and control of RF power amplifiers. Boston: Kluwer Academic Publishers, 2003.
    [23] Lim, C.C.; Yeo, K.S.; Chew, K.W.; Tan, C.Y.; Do, M.A.; Ma, J.G.; Chan, L.; “Equivalent circuit model of a stacked inductor for high-Q on-chip RF applications”Circuits, Devices and Systems, IEE Proceedings Volume 153, Issue 6, Page(s):525 – 532, Dec. 2006
    [24] Eric J. Newman,Analog Devices Inc.,"Delicate balancing acts ensure balun performance",2006
    [25] Aoki, I.; Kee, S.D.; Rutledge, D.B.; Hajimiri, A.;"Fully integrated CMOS power amplifier design using the distributed active-transformer architecture";Solid-State Circuits, IEEE Journal of Volume 37, Issue 3, March 2002 Page(s):371 – 383
    [26] Marco Delaurenti, PhD dissertation, "Design and optimization techniques of high-speed VLSI circuits" (1999))
    [27] NanoDotTek Report NDT14-08-2007, 12 August 2007
    [28] Reynaert, P.;" A 2.45-GHz 0.13-μm CMOS PA With Parallel Amplification";Solid-State Circuits, IEEE Journal of Volume 42, Issue 3, March 2007 Page(s):551 - 562

    下載圖示 校內:2011-08-14公開
    校外:2011-08-14公開
    QR CODE