| 研究生: |
蔡新通 Tsai, Shin-Tung |
|---|---|
| 論文名稱: |
x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.8Sm0.4/3TiO3微波介電材料之研究與應用 Study and Applications of x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.8Sm0.4/3TiO3 Microwave Dielectric Materials |
| 指導教授: |
黃正亮
Hunag, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 陶瓷 、微波 |
| 外文關鍵詞: | microwave, ceramic |
| 相關次數: | 點閱:77 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將討論介電陶瓷材料x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.8Sm0.4/3TiO3系統,藉由正負頻率溫度係數的互補,使其達到平衡。(Mg0.95Zn0.05)TiO3 的微波特性為 ~17, Q × f ~260,000在9GHz以及 約-40 ppm/℃;Ca0.8Sm0.4/3TiO3為 ~120, Q × f ~13000以及 約400 ppm/℃,調整x值使其頻率溫度飄移係數趨近於零。除此之外,嘗試添加不同燒結促進劑V2O5、B2O3,探討其添加量對材料微波特性的影響。實驗結果顯示,當x=0.875且燒結溫度在1300℃持溫4小時下具有良好的微波特性:Q×f~108000(9GHz),εr~24, ~6(ppm/oC)。
最後,本論文以FR4、氧化鋁、自製基板,使用方形環狀共振器製作設計一中心頻率定為2.4GHz的帶通濾波器,再利用電腦模擬與實做量測結果比較。
The microwave properties of x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.8Sm0.4/3TiO3 dielectric ceramic materials have been discussed in this paper. By compensating for positive temperature coefficient and negative one. We achieve the balance. Ca0.8Sm0.4/3TiO3 has dielectric properties of ~120,Q × f value ~13000 and a positive value ~ 400 ppm/℃. (Mg0.95Zn0.05)TiO3 possesses high dielectric constant ( ~17),high quality factor (Q × f ~260,000 at 9GHz) and negative value(-40 ppm/℃).By appropriately adjusting the x value in the x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.8Sm0.4/3TiO3 ceramic system, zero value can be achieved. The experiment results show that it has excellent dielectric properties(Q×f~108000(9GHz),εr~24,τf~6ppm/oC) when x value equal to 0.875。 Besides, we attempt to add different sintering aids V2O5 and B2O3 respectively and discuss what effects of aids amount for the microwave properties of 0.875(Mg0.95Zn0.05)TiO3-0.125Ca0.8Sm0.4/3TiO3.
Finally, we design and fabricate a band-pass filters using square ring resonators with 2.4GHz center frequency on FR4、Al2O3、875MZCT substrate respectively. And we compared with the result of the simulation and measurement.
[1] 劉士生, “(Mg0.95Zn0.05)TiO3介電陶瓷之微波特性及其應用”, 國立成功大學碩士論文, 2004.
[2] K. H. Yoon , W. S. Kim , E. S. Kim, “Dependence of the octahedral bond valence on microwave dielectric properties of Ca1-xSm2x/3TiO3 ceramics”, Materials Science and Engineering, B99 pp. 112-115, 2003.
[3] Lung-Hwa Hsieh , Kai Chang, “Slow-Wave Bandpass Filters Using Ring or Stepped-Impedance Hairpin Resonators”, IEEE Trans. Microwave Theory Tech., vol. 50, pp.1795-1800, July 2002.
[4] K. Chang, Microwave Ring Circuits and Antennas. New York: Wiley, 1996.
[5] D. Kajfez, “Computed model field distribution for isolated dielectric resonator-s”, IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[6] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators”, Microwave System News., vol. 13, pp. 152-161, 1983.
[7] D. Kajfez, and P. Guillon, Dielectric resonators, New York: Artech House, 1989.
[8] 吳朗, 電工材料, 滄海書局, 87年2月.
[9] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch.
[10] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy, 1984.
[11] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase sintering of jagged particles”, J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
[12] A. M. GLAZER, Acta Cryst., vol. A31, pp. 756, 1975.
[13] E. L. COLLA, I. M. REANEY and N. SETTER, Jpn. J. Appl. Phys., vol. 74, pp. 3414, 1993.
[14] A. Meden and M. Ceh, Material Science Forum 773, pp. 278-281, 1998.
[15] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期 90年8月.
[16] E. J. Denlinger, “Losses of microstrip lines”, IEEE Trans. Microwave Theory Tech., vol. MIT-28, pp. 513–522, Jun 1980.
[17] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip”, IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun 1968.
[18] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, 1998.
[19] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
[20] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- matching networks and coupling structures., New York: McGraw-Hill, 1980.
[21] V. Nalbandian, and W. Steenart, “Discontinuity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 573-578, Sep 1980.
[22] C. C. Yu and K. Chang, “Transmission-line analysis of a capacitively coupled microstrip-ring resonator”, IEEE Trans. Microwave Theory Tech., vol. 45, pp. 2018-2024, Nov. 1997.
[23] D. M. Pozar, Microwave Engineering., New York: John Wiley & Sons, 2nd Ed., 1998.
[24] G. Kumar and K. C. Gupta, “Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges”, IEEE Trans. Antennas Propagat., vol. AP-32, pp. 1375-1379, Dec. 1984.
[25] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 1999.
[26] D. Kajfez, “Computed model field distribution for isolated dielectric resonators”, IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[27] D. Kajfez, and P. Guillon, Dielectric Resonators., New York: Artech House, 1989.
[28] W. E. Courtney “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators”, IEEE. Trans. Microwave Theory Tech., vol. MTT-18, pp. 476-485, 1970.
[29] Y. Kobayashi, and N. Katoh, “Microwave Measurement of Dielectric Properties of Low-loss Materials by Dielectric Rod Resonator Method”, IEEE. Trans. MTT, vol. MTT-33, pp.586-592, 1985.
[30] O. V. Karpova: Soviet Phys. ,vol. 1 , pp. 220, 1959.
[31] S. H. Cha: IEEE Trans. MTT, vol. MTT-33, pp.519, 1985.
[32] P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators”, IEEE MTT-S, Symposium Dig., pp. 473-476, 1985.
[33] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range”, IEEE Trans. MTT, vol. MTTS, pp. 402-410, 1960.
[34] Cheng-Liang Huang, Ming-Hung Weng, “Improved high Q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature”, Mater. Res. Bull. vol. 36, pp. 2741-2750, 2001.
[35] Hee-Kyun Shin, Hyunho Shin, Hyun Suk Jung, Seo-Yong Cho , Jeong-Ryeol Kim , Kug Sun Hong, “Role of lithium borosilicate glass in the decomposition of MgTiO3-based dielectric ceramic during sintering”, Mat. Res. Bull., vol.41, pp.1206- 1214, 2006.
[36] B.D. Silverman, Phys. Rev., vol. 125, pp. 1921, 1962.
[37] 魏炯權,電子陶瓷材料,全華科技圖書, 93年7月
[38] Jun-Jie Wang, Cheng-Liang Huang and Po-Hsin Li, “Microwave Dielectric Properties of (1-x)(Mg0.95Zn0.05)TiO3-xCa0.6La0.8/3TiO3 Ceramic System”, Jpn. J. Appl. Phys., vol. 45, pp. 6352-6356, 2006.
[39] C. L. Huang, J. T. Tsai and Y. B. Chen: Mater. Res. Bull., vol. 36, pp. 547, 2001.
[40] H. T. Kim, J. D. Byun and Y. Kim: Mater. Res. Bull., vol. 33, pp. 975, 1998.
[41] Hee-Kyun Shin, Hyunho Shin, Hyun Suk Jung, Seo-Yong Cho , Jeong-Ryeol Kim , Kug Sun Hong, “Role of lithium borosilicate glass in the decomposition of MgTiO3-based dielectric ceramic during sintering”, Mat. Res. Bull., vol. 41, pp.1206- 1214, 2006.