簡易檢索 / 詳目顯示

研究生: 蔡新通
Tsai, Shin-Tung
論文名稱: x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.8Sm0.4/3TiO3微波介電材料之研究與應用
Study and Applications of x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.8Sm0.4/3TiO3 Microwave Dielectric Materials
指導教授: 黃正亮
Hunag, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 77
中文關鍵詞: 陶瓷微波
外文關鍵詞: microwave, ceramic
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將討論介電陶瓷材料x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.8Sm0.4/3TiO3系統,藉由正負頻率溫度係數的互補,使其達到平衡。(Mg0.95Zn0.05)TiO3 的微波特性為 ~17, Q × f ~260,000在9GHz以及 約-40 ppm/℃;Ca0.8Sm0.4/3TiO3為 ~120, Q × f ~13000以及 約400 ppm/℃,調整x值使其頻率溫度飄移係數趨近於零。除此之外,嘗試添加不同燒結促進劑V2O5、B2O3,探討其添加量對材料微波特性的影響。實驗結果顯示,當x=0.875且燒結溫度在1300℃持溫4小時下具有良好的微波特性:Q×f~108000(9GHz),εr~24, ~6(ppm/oC)。
    最後,本論文以FR4、氧化鋁、自製基板,使用方形環狀共振器製作設計一中心頻率定為2.4GHz的帶通濾波器,再利用電腦模擬與實做量測結果比較。

    The microwave properties of x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.8Sm0.4/3TiO3 dielectric ceramic materials have been discussed in this paper. By compensating for positive temperature coefficient and negative one. We achieve the balance. Ca0.8Sm0.4/3TiO3 has dielectric properties of ~120,Q × f value ~13000 and a positive value ~ 400 ppm/℃. (Mg0.95Zn0.05)TiO3 possesses high dielectric constant ( ~17),high quality factor (Q × f ~260,000 at 9GHz) and negative value(-40 ppm/℃).By appropriately adjusting the x value in the x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.8Sm0.4/3TiO3 ceramic system, zero value can be achieved. The experiment results show that it has excellent dielectric properties(Q×f~108000(9GHz),εr~24,τf~6ppm/oC) when x value equal to 0.875。 Besides, we attempt to add different sintering aids V2O5 and B2O3 respectively and discuss what effects of aids amount for the microwave properties of 0.875(Mg0.95Zn0.05)TiO3-0.125Ca0.8Sm0.4/3TiO3.
    Finally, we design and fabricate a band-pass filters using square ring resonators with 2.4GHz center frequency on FR4、Al2O3、875MZCT substrate respectively. And we compared with the result of the simulation and measurement.

    第一章 緒論 …………………………………………………… 1 1-1. 前言 …………………………………………………… 1 1-2. 研究目的 ………………………………………………… 1 第二章 介電材料原理 ……………………………………… 2 2-1. 介電材料的微波特性與理論 …………………………… 2 2-1-1. 微波特性 ………………………………… 2 2-1-2. 介電理論 ……………………………………… 4 2-2. 介電共振器理論 ……………………………………… 5 2-2-1. 介電共振器 …………………………………… 5 2-3. 鈣鈦礦之結構 ………………………………………… 6 2-4. 燒結理論 …………………………………………… 7 2-4-1. 液相燒結 ……………………………………… 7 第三章 微波濾波器理論 ……………………………………… 12 3-1. 濾波器之簡介 ………………………………………… 12 3-2. 微帶線原理 …………………………………………… 13 3-2-1. 微帶線的損失 ……………………………………… 13 3-2-2. 微帶線的不連續效應 ………………………………… 14 3-2-3. 微帶線傳輸組態 …………………………………… 15 3-2-4. 微帶線各項參數公式 ………………………………… 16 3-3. 環狀共振器 ………………………………………… 16 3-3-1. 簡介 ………………………………………………… 16 3-3-2. 環狀共振器的頻率模態 ………………………………… 17 3-3-3. 輸入阻抗的計算 ………………………………… 18 3-3-4. 方形環狀共振器濾波器 ……………………………… 19 第四章 實驗程序與量測方法 ………………………………… 26 4-1. 材料的製備 ………………………………………… 26 4-2. 微波介電材料的量測與特性分析 ………………… 27 4-2-1. X-Ray分析(XRD) ………………………………… 27 4-2-2. 掃瞄式電子顯微鏡(SEM)分析 ………………… 27 4-2-3. 密度之量測 ………………………………………… 27 4-3. 微波特性的量測 ………………………………… 28 4-3-1. 介電係數之量測 …………………………………… 28 4-3-2. Qd值之量測 ………………………………………… 29 4-3-3. 頻率溫度係數(τf)之量測 ………………………… 31 4-4. 濾波器元件之製作與量測 …………………… 32 4-4-1. 濾波器設計 ………………………… 32 4-4-2. 濾波器實做與量測 ………………… 32 4-4-3. 特性量測 ………………………… 34 第五章 實驗結果與討論 ………………………………… 37 5-1. x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.8Sm0.4/3TiO3的微波特性探討 ……… 37 5-2. 0.875(Mg0.95Zn0.05)TiO3-0.125Ca0.8Sm0.4/3TiO3添加V2O5燒結促進劑………………………………………………………… 37 5-3. 0.875(Mg0.95Zn0.05)TiO3-0.125Ca0.8Sm0.4/3TiO3添加B2O3燒結促進劑 …………………………………………………… 39 5-4. 濾波器特性探討 ………………………………………… 39 第六章 結論 …………………………………………… 74 參考文獻 …………………………………………………… 75

    [1] 劉士生, “(Mg0.95Zn0.05)TiO3介電陶瓷之微波特性及其應用”, 國立成功大學碩士論文, 2004.

    [2] K. H. Yoon , W. S. Kim , E. S. Kim, “Dependence of the octahedral bond valence on microwave dielectric properties of Ca1-xSm2x/3TiO3 ceramics”, Materials Science and Engineering, B99 pp. 112-115, 2003.

    [3] Lung-Hwa Hsieh , Kai Chang, “Slow-Wave Bandpass Filters Using Ring or Stepped-Impedance Hairpin Resonators”, IEEE Trans. Microwave Theory Tech., vol. 50, pp.1795-1800, July 2002.

    [4] K. Chang, Microwave Ring Circuits and Antennas. New York: Wiley, 1996.

    [5] D. Kajfez, “Computed model field distribution for isolated dielectric resonator-s”, IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.

    [6] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators”, Microwave System News., vol. 13, pp. 152-161, 1983.

    [7] D. Kajfez, and P. Guillon, Dielectric resonators, New York: Artech House, 1989.

    [8] 吳朗, 電工材料, 滄海書局, 87年2月.

    [9] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch.

    [10] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy, 1984.

    [11] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase sintering of jagged particles”, J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.

    [12] A. M. GLAZER, Acta Cryst., vol. A31, pp. 756, 1975.

    [13] E. L. COLLA, I. M. REANEY and N. SETTER, Jpn. J. Appl. Phys., vol. 74, pp. 3414, 1993.

    [14] A. Meden and M. Ceh, Material Science Forum 773, pp. 278-281, 1998.

    [15] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期 90年8月.

    [16] E. J. Denlinger, “Losses of microstrip lines”, IEEE Trans. Microwave Theory Tech., vol. MIT-28, pp. 513–522, Jun 1980.

    [17] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip”, IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun 1968.

    [18] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, 1998.

    [19] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.

    [20] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- matching networks and coupling structures., New York: McGraw-Hill, 1980.

    [21] V. Nalbandian, and W. Steenart, “Discontinuity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 573-578, Sep 1980.

    [22] C. C. Yu and K. Chang, “Transmission-line analysis of a capacitively coupled microstrip-ring resonator”, IEEE Trans. Microwave Theory Tech., vol. 45, pp. 2018-2024, Nov. 1997.

    [23] D. M. Pozar, Microwave Engineering., New York: John Wiley & Sons, 2nd Ed., 1998.

    [24] G. Kumar and K. C. Gupta, “Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges”, IEEE Trans. Antennas Propagat., vol. AP-32, pp. 1375-1379, Dec. 1984.

    [25] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 1999.

    [26] D. Kajfez, “Computed model field distribution for isolated dielectric resonators”, IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.

    [27] D. Kajfez, and P. Guillon, Dielectric Resonators., New York: Artech House, 1989.

    [28] W. E. Courtney “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators”, IEEE. Trans. Microwave Theory Tech., vol. MTT-18, pp. 476-485, 1970.

    [29] Y. Kobayashi, and N. Katoh, “Microwave Measurement of Dielectric Properties of Low-loss Materials by Dielectric Rod Resonator Method”, IEEE. Trans. MTT, vol. MTT-33, pp.586-592, 1985.

    [30] O. V. Karpova: Soviet Phys. ,vol. 1 , pp. 220, 1959.

    [31] S. H. Cha: IEEE Trans. MTT, vol. MTT-33, pp.519, 1985.

    [32] P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators”, IEEE MTT-S, Symposium Dig., pp. 473-476, 1985.

    [33] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range”, IEEE Trans. MTT, vol. MTTS, pp. 402-410, 1960.

    [34] Cheng-Liang Huang, Ming-Hung Weng, “Improved high Q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature”, Mater. Res. Bull. vol. 36, pp. 2741-2750, 2001.

    [35] Hee-Kyun Shin, Hyunho Shin, Hyun Suk Jung, Seo-Yong Cho , Jeong-Ryeol Kim , Kug Sun Hong, “Role of lithium borosilicate glass in the decomposition of MgTiO3-based dielectric ceramic during sintering”, Mat. Res. Bull., vol.41, pp.1206- 1214, 2006.

    [36] B.D. Silverman, Phys. Rev., vol. 125, pp. 1921, 1962.

    [37] 魏炯權,電子陶瓷材料,全華科技圖書, 93年7月

    [38] Jun-Jie Wang, Cheng-Liang Huang and Po-Hsin Li, “Microwave Dielectric Properties of (1-x)(Mg0.95Zn0.05)TiO3-xCa0.6La0.8/3TiO3 Ceramic System”, Jpn. J. Appl. Phys., vol. 45, pp. 6352-6356, 2006.

    [39] C. L. Huang, J. T. Tsai and Y. B. Chen: Mater. Res. Bull., vol. 36, pp. 547, 2001.

    [40] H. T. Kim, J. D. Byun and Y. Kim: Mater. Res. Bull., vol. 33, pp. 975, 1998.

    [41] Hee-Kyun Shin, Hyunho Shin, Hyun Suk Jung, Seo-Yong Cho , Jeong-Ryeol Kim , Kug Sun Hong, “Role of lithium borosilicate glass in the decomposition of MgTiO3-based dielectric ceramic during sintering”, Mat. Res. Bull., vol. 41, pp.1206- 1214, 2006.

    下載圖示 校內:2008-06-23公開
    校外:2010-06-23公開
    QR CODE