簡易檢索 / 詳目顯示

研究生: 林偉群
Lin, Wei-Chun
論文名稱: 單相光伏能量轉換系統與數位晶片設計
Design of Single Phase Photovoltaic Energy Conversion System and Digital Control Chip
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 111
中文關鍵詞: 高升壓光伏系統標準元件庫設計
外文關鍵詞: High step-up, PV system, Cell-Based Design
相關次數: 點閱:65下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文內容為研製一單相光伏能量轉換系統並完成數位控制晶片之佈局與模擬驗證。此系統包含具新型直流-直流高昇壓轉換器及全橋換流器,將太陽能板所獲得的直流電源,轉換成交流電源。此高升壓轉換器為電流饋入式,可以降低輸入電流漣波。其漏感能量亦可被回收,有效的降低導通損失。利用可程式邏輯閘陣列FPGA作為控制器,完成高升壓轉換器最大功率追蹤策略,以及全橋換流器市電併聯的電流控制與獨立負載110Vrms/ 60Hz的電壓控制。本文依據TSMC 0.18μm標準元件庫設計流程,設計一系統數位控制晶片。最後,透過研製一個實體系統,並由實驗結果驗證單相光伏能量轉換系統與控制程式的可行性。

    In this thesis, a single phase photovoltaic energy conversion system and digital control chip are designed. The PV system includes a novel high step-up DC-DC converter and a full bridge inverter. The system transfers DC power generated by photovoltaic cells into AC power. The step-up converter is a current-fed type which makes input current ripple small. Because the leakage current is recycled, conduction loss is significantly decreased. With the FPGA controller, the converter possesses the MPPT control, and the inverter supports loads with real power to the utility by current mode control, or exclusively with 110V/60Hz sinusoidal voltage by voltage mode control. After the functions are verified, the control chip is designed with TSMC 0.18μm manufacturing process. Finally, the proposed PV system is implemented, and experimental results are provided to verify the performances of the system circuits and the control program.

    摘 要 I 英文摘要 II 誌 謝 III 目 錄 IV 圖 目 錄 VIII 表 目 錄 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究內容與目的 2 1.3 論文大綱 4 第二章 光伏能量轉換系統 5 2.1 光伏系統簡介 5 2.1.1 獨立型(Stand-alone System) 5 2.1.2電力系統併網型(Grid-Connected System) 6 2.2 太陽能板特性介紹 7 2.3最大功率追蹤方式介紹 9 2.3.1 電壓回授法 9 2.3.2 功率回授法 10 2.3.3 擾動觀察法 11 2.3.4 增量電導法 12 2.4 高升壓轉換電路介紹 13 2.4.1 串接架構 13 2.4.2 疊接架構 14 2.4.3 切換式電容技術 15 2.4.4 電壓提升技術 16 2.4.5 耦合電感技術 17 2.4.6 討論與比較 19 第三章 系統硬體介紹 21 3.1 系統基本架構與功能 21 3.2 新型高升壓轉換器 23 3.2.1 新型高升壓轉換器架構 23 3.2.2 新型高升壓轉換器之工作模式分析 25 3.2.3 連續導通模式分析(CCM) 34 3.2.4 臨界導通模式分析(BCM) 36 3.2.5 不連續導通模式分析(DCM) 39 3.3全橋換流器控制原理介紹 44 第四章 數位控制系統與周邊電路介紹 47 4.1周邊電路設計 47 4.1.1 零交越點偵測電路(Zero Cross Detector) 48 4.1.2 電壓回授電路(Voltage Sensor) 49 4.1.3 電流回授電路(Current Sensor) 49 4.1.4 類比-數位轉換器(Analog to Digital Converter) 50 4.2 數位控制電路設計 52 4.2.1 數位控制電路介紹與規劃 52 4.2.2 轉換器控制電路規劃 55 4.2.3 換流器控制電路規劃 57 第五章 系統電路製作及實測結果 67 5.1 光伏轉換系統規格 67 5.2 高升壓電路製作及實測結果 69 5.2.1 耦合電感與電容設計 70 5.2.2 高升壓轉換器實測結果 72 5.2.3 最大功率追蹤實測結果 77 5.3 全橋換流器製作及實驗結果 79 5.3.1 併網型換流器實測結果 82 5.3.2 獨立型換流器實驗結果 83 5.4 數位晶片設計與驗證 84 5.4.1 類比-數位轉換控制實測 85 5.4.2 異常偵測單元控制實測 85 5.4.3 數位晶片設計與佈局 88 5.4.4 數位晶片量測結果 102 第六章 結論與未來展望 105 6.1 結論 105 6.2 未來展望 106 參考文獻 107

    [1] 熊古秀,太陽光電知多少,科學發展,第383期,第34-41頁,2004年。
    [2] 陳建富,太陽光電能之應用,電機月刊,第二十卷第二期,第118頁,2010年。
    [3] 施顏祥,中華民國一百零一年度再生能源電能躉購費率及其計算公式, 2012年。
    [4] W. Li, X. Lv, Y. Deng, J. Liu, and X. He, “A review of non-isolated high step-up dc/dc converters in renewable energy applications,” IEEE APEC, pp. 364-369, 2009.
    [5] R. J. Wai and W. H. Wang, “Design of grid-connected photovoltaic generation system with high step-up converter and sliding-mode inverter control,” IEEE CCA on Control Applications, pp. 1179-1184, 2007.
    [6] R. J. Wai, C. Y. Lin, and W. H. Wang, “Novel power control scheme for stand-alone photovoltaic generation system,” IEEE IECON, pp. 97-102, 2006.
    [7] W. Y. Choi, S. G. Song, S. J. Park, K. H. Kim, and Y. C. Lim, “Photovoltaic module integrated converter system minimizing input ripple current for inverter load,” IEEE INTELEC, pp. 1-4, 2009.
    [8] Z. Liang, R. Guo, J. Li, and Alex Q. Huang, “A High-Efficiency PV Module-Integrated DC/DC Converter for PV Energy Harvest in FREEDM Systems” IEEE Trans. on Power Electronics, pp. 897-909, 2011.
    [9] 郭永超, “單級式光伏能量轉換系統之設計與研製”,國立成功大學電機工程研究所博士論文,中華民國89年。
    [10] 王文哲, “單級式三相化光伏能量轉換系統”,國立成功大學電機工程研究所碩士論文, 中華民國92年。
    [11] 林豐盛, “以FPGA完成單級式光伏能量轉換系統之研製”,國立成功大學電機工程研究所碩士論文, 中華民國93年。
    [12] 黃崇倫, “太陽光電能市電並聯轉換器之研製”,國立雲林科技大學電機工程研究所碩士論文, 中華民國97年。
    [13] 林佑星, “家用型太陽能發電系統之研製”,國立臺灣科技大學電機工程研究所碩士論文, 中華民國97年。
    [14] 謝宏燦, “基於DSP控制之獨立行太陽能供電系統”,國立臺灣科技大學電子工程研究所碩士論文, 中華民國98年。
    [15] 賴威甫, “太陽能模組換流器之研製”,國立成功大學電機工程研究所碩士論文, 中華民國100年。
    [16] 楊素華、蔡泰成,太陽光能發電元件,太陽能電池,科學發展,第390期,第51-55頁,2005年。
    [17] 張品全,太陽電池,科學發展,第349期,第23-29頁,2002年。
    [18] 吳財福、張建軒、陳裕愷,太陽能供電與照明系統綜論,全華出版社,2000年。
    [19] 陳文瑋,“應用於太陽能電池之多輸出轉換器研製“,成功大學電機工程研究所碩士論文,中華民國96年。
    [20] V. Salas, E. Olías, A. Barrado, and A. Lázaro, "Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems," Solar Energy Materials and Solar Cells, vol. 90, no. 11, pp. 1555-1578, Jul. 2006.
    [21] S. M. Raza Kazmi, H. Goto, H. J. Guo, and O. Ichinokura "Review and critical analysis of the research papers published till date on maximum power point tracking in wind energy conversion system," in Proc. IEEE ECCE, pp. 4075-4082, Sept. 2010.
    [22] Z. M. Salameh, F. Dagher, and W. A. Lynch, "Step-down maximum power point tracker for photovoltaic systems," Solar Energy, vol. 46, no. 5, pp. 279-282, 1991.
    [23] T. Esram and P. L. Chapman, "Comparison of photovoltaic array maximum power point tracking techniques," IEEE Trans. on Energy Conv., vol. 22, no. 2, pp. 439-449, Jun. 2007.
    [24] M. Matsui, T. Kitano, D. H. Xu, and Z. Q. Yang, "A new maximum photovoltaic power tracking control scheme based on power equilibrium at DC link," in Proc. IEEE IAS, vol. 2, pp. 804-809, 1999.
    [25] P. Midya, P. T. Krein, R. J. Turnbull, R. Reppa, and J. Kimball, "Dynamic maximum power point tracker for photovoltaic applications," in Proc. IEEE PESC, vol. 2, pp. 1710-1716, Jun. 2006.
    [26] J. H. R. Enslin, "Maximum power point tracking: a cost saving necessity in solar energy systems," in Proc. IEEE IECON, pp. 1073-1077, Nov. 1990.
    [27] J. A. Gow and C. D. Manning, "Controller arrangement for boost converter systems sourced from solar photovoltaic arrays or other maximum power sources," Proc. Inst. Elect. Eng.-Elect. Power Appl., vol. 147, no. 1, pp. 15–20, Jan. 2000.
    [28] J. Youngseok, S. Junghun, Y. Gwonjong, and C. Jaeho, "Improved perturbation and observation method (IP&O) of MPPT control for photovoltaic power systems," in Proc. IEEE PVSC, pp. 1788-1791, Jan. 2005.
    [29] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, "Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions", Proc. Inst. Elect. Eng.-Gen., Trans., and Distr., vol. 142, no. 1, pp. 59-64, Jan. 1995.
    [30] S. Singer and A. Braunstein, "Maximum power transfer from a nonlinear energy source to an arbitrary load," Proc. Inst. Elect. Eng.-Gen., Trans., and Distr., vol. 134, no. 4, pp. 281-287, Jul. 1987.
    [31] F. L. Luo and H. Ye, “Positive output cascade boost converters,” in Proc. IEE Electric Power Applications, vol. 151, no. 5, pp. 590-606, Sep. 2004.
    [32] M. Veerachary, “Signal flow graph modeling of cascade boost converters,” in Proc. IEEE PESC, vol. 2, pp. 606-609, Jun. 2003.
    [33] F. J. Perez-Pinal and I. Cervantes, “Multi-objective control for cascade boost converter with single active switch,” in Proc. IEEE International IEMDC, pp.1858-1862, May 2009.
    [34] L. Palma, M. H. Todorovic, and P. Enjeti, “A high gain transformer-less dc-dc converter for fuel-cell applications,” IEEE PESC, pp. 2514-2520, June 2005.
    [35] P. Klimczak and S. Munk-Nielsen, “Boost converter with three-state switching cell and integrated magnetics,” IEEE
    [36] O. C. Mak, Y. C. Wong, and A. Ioinovici, “Step-up dc power supply based on a switched-capacitor circuit,” IEEE Trans. Industrial Electronics, vol. 42, no. 1, pp. 90-97, Feb. 1995.
    [37] O. Abutul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Boost converter with high voltage gain using a switched capacitor circuit,” IEEE Trans. Circuits and Systems, vol. 3, pp. 296-299, May 2003.
    [38] F. L. Luo and X. Chen, “Self-lift dc-dc converters,” in Proc. IEEE Power Electronic Drives and Energy Systems for Industrial Growth, vol.1, pp.441-446, Dec. 1998.
    [39] F. L. Luo and Hong Ye, “Positive output super-lift converters,” IEEE Trans. Power Electronics, vol. 18, no. 1, Jan. 2003.
    [40] Q. Zhao, “High-efficiency, high step-up dc–dc converters,” IEEE Trans. Power Electronics, vol. 18, no. 1, pp. 65-73, Jan. 2003.
    [41] K. B. Park, H. W. Seong, H. S. Kim, G. W. Moon, and M. J. Youn, “Integrated boost-sepic converter for high step-up applications,” in Proc. IEEE PESC, pp. 944-950, Jun. 2008.
    [42] Y. M. Chen, Y. C. Liu, S. C. Hung, and C. S. Cheng, “Multi-Input Inverter for Grid-Connected” IEEE TRANS. on Power Electronics, pp. 1070-1077, May. 2007
    [43] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics, John Wiley & Sons, Inc., 2003.
    [44] 鄭群星,FPGA/CPLD數位晶片設計入門使用Xilinx ISE發展系統,全華科技圖書股份有限公司,2005年。
    [45] 王旭昇,Logic Synthesis with Design Compiler,國家晶片系統設計中心,2012。
    [46] 張年翔,Cell-Based IC Physical Design and Verification with SOC Encounter,國家晶片系統設計中心,2012。
    [47] 林俊賓,Post-Layout Simulation Verification with Nanosim,國家晶片系統設計中心,2012。
    [48] 楊鈞麟,Design for Testability with DFT Compiler and TeraMax ,國家晶片系統設計中心,2012。
    [49] ADC0820 Datasheet. National Semicondutor, Inc.,1999.
    [50] IEEE Std. 929, IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems, IEEE-SA Standards Board, Jan. 2000.

    無法下載圖示 校內:2018-07-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE