| 研究生: |
郭呈祥 Kuo, Chen-Hsiang |
|---|---|
| 論文名稱: |
人形機器人之行為模式步伐控制器之設計與實現 Design and Implementation of Behavior Mode Based Gait Controller for Humanoid Robot |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 人形機器人 |
| 外文關鍵詞: | Humanoid Robot |
| 相關次數: | 點閱:85 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要的目標在於探討人形機器人的行為模式。對雙足機器人的行為模式研究來說,穩定的步伐規劃,是最基本卻也是最重要的一環。為此,本論文將提出透過步伐控制器完成更穩定的行為模式設計方法。首先,介紹我們實驗室所設計之人形機器人(NCKU-1)及其整體架構,包含機械結構設計與硬體配置,並詳述所選用的核心處理器、影像處理裝置、感測器及電源整合電路等。接著,提出數學座標模型,以及零力矩點理論(ZMP),作為運動規劃之根據,以此設計出各種基本動作模式。最後,我們加入加速度計與壓力感測器,並設計姿態控制器與步伐選擇控制器,來強化機器人步伐控制的能力。經由本研究之實驗證明,透過這樣的設計,機器人可以更穩健地的在非平坦地面行走運動。
This thesis is mainly to concern the research of behavior modes of a humanoid robot. A stable gait planning is the most essential and important part in the study of humanoid robot. Therefore, we design and implement a behavior mode based gait controller. Firstly, this thesis introduces the humanoid robot (NCKU-1) that we construct and addresses the overview of our robot system, which includes the design of mechanical structure and hardware configuration, center process unit, image process unit, sensors, and the integrated power circuit board. Secondly, we propose a mathematic coordinate model and adopt the zero-moment-point theorem to construct the basic motion patterns. Furthermore, we apply two sensors, the accelerometer and the force sensor, to the robot in order to design the posture controller and the behavior mode based controller to improve the performance of walking and climbing stairs. Finally, our real experimental results demonstrate that our robot, NCKU-1, can balance itself on an incline, walk on a sloping surface, and climb stairs with more smooth and stable motions.
[1] P. Menzel and F. D’Aluisio, Robo sapiens:evolution of a new species, MIT Press, 2000.
[2] I. Kato, S. Matsushita, T. Ishida, and K. Kume, “Development of artificial rubber muscles,” in Proc. Third Int. Symp. External Control of Human Extremities, pp. 565–582, 1970.
[3] H. Miura and I. Shimoyama, “Dynamic walking of a biped,” Int. J. Robot. Res., vol. 3, no. 2, pp. 60–74, 1984.
[4] J. Yamaguchi, A. Takanishi, “Design of biped walking robots having antagonistic driven joints using nonlinear spring mechanism,” Intelligent Robots and Systems, 1997. IROS '97., Proc. of the 1997 IEEE/RSJ Int. Conf., vol 1, pp. 251-259, Sept. 1997.
[5] S. M. Song and K. J. Waldron, “An analytical approach for gait and its application on wave gaits,” Int. J. Robot. Res., vol. 6, no. 2, pp. 60–71, 1987.
[6] C. K. Ahn, M. C. Lee, and S. J. Go, “Development of a biped robot with toes to improve gait pattern,” Advanced Intelligent Mechatronics, 2003. AIM 2003. Proc. 2003 IEEE/ASME Int. Conf., vol 2, pp. 729-734, July 2003.
[7] F. Erbatur, A. Okazaki, K. Obiya,T. Takahashi, and A. Kawamura, “A study on the zero moment point measurement for biped walking robots”. Proc.7th Int. Workshop on Advanced Motion Control, pp. 431–436, 2002.
[8] A. Takanishi, M. Ishida, Y. Yamazaki, and I. Kato, “The realization of dynamic walking robot WL-10RD”. Proc. Int. Conf. on Advanced Robotics, pp. 459–466, 1985
[9] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of Honda humanoid robot”. Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1321–1326,1998
[10] M. Vukobratovic, B. Brovac, D. Surla, and D.Stokic, Biped Locomotion, Springer-Verlag, 1990.
[11] T. Narukawa, M. Takahashi, and K. Yoshida, “Biped locomotion on level ground by torso and swing-leg control based on passive-dynamic walking,” Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ Int. Conf., pp. 4009-4014, August 2005.
[12] J. K. Hodgins and M. H. Raibert, “Adjusting step length for rough terrain locomotion,” IEEE Trans. Robot. Automat., vol. 7, pp. 289–298, June 1991.
[13] M. Cao. and A. Kawamura, “Generation of humanoid biped walking pattern using neural oscillatory network,” Advanced Intelligent Mechatronics '97, IEEE/ASME Int. Conf., pp. 81, June 1997.
[14] L. Jalics, H. Hemami, and Y. F. Zheng, “Pattern generation using coupled oscillators for robotic and biorobotic adaptive periodic movement,” Robotics and Automation, 1997. Proc., 1997 IEEE Int. Conf., vol 1, pp. 179-184, April 1997.
[15] M. Cao and A. Kawamura, “An evolutionary design scheme of neural oscillatory network for generation of biped walking patterns,” Advanced Motion Control, 1998. AMC '98-Coimbra., 1998 5th Int. Workshop, pp. 666-671, July 1998
[16] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K. Tanie, “Planning walking patterns for a biped robot,” Robotics and Automation, IEEE Trans., vol 17, pp. 280-289, June 2001.
[17] T. Ishida, Y. Kuroki, and T. Takahashi, “Analysis of motions of a small biped entertainment robot,” Intelligent Robots and Systems, 2004. (IROS 2004). Proc. 2004 IEEE/RSJ Int. Conf., vol 1, pp. 142-147, Oct. 2004
[18] P. Sardain and G. Bessonnet, “Zero moment point-measurements from a human walker wearing robot feet as shoes,” Systems, Man and Cybernetics, Part A, IEEE Trans., vol 34, pp. 638-648, Sept. 2004.
[19] M. Morisawa, T. Yakoh, T. Murakami, and K. Ohnishi, “A comparison study between parallel and serial linked structures in biped robot system,” Industrial Electronics Society, 2000. IECON 2000. 26th Annual Conf. of the IEEE, vol 4, pp. 2614-2619, Oct. 2000.
[20] Q. Huang, and Y. Nakamura, “Sensory reflex control for humanoid walking,” Robotics, IEEE Trans., vol 21, pp. 977-984, Oct. 2005.
[21] Q. Huang, W. M. Zhang, and K. Li, “Sensory reflex for biped humanoid walking,” Intelligent Mechatronics and Automation, 2004. Proc. 2004 Int. Conf., pp. 83-88, Aug. 2004.
[22] Q. Huang, S. Kajita, N. Koyachi, K. Kaneko, K. Yokoi, T. Kotoku, H. Arai, K. Komoriya, and K. Tanie, “Walking patterns and actuator specifications for a biped robot,” Intelligent Robots and Systems, 1999. IROS '99. Proc. 1999 IEEE/RSJ Int. Conf.,vol 3, pp. 1462-1468, Oct. 1999.
[23] Q. Huang, K. Li, Y. Nakamura, and T. Kazuo, “Analysis of physical capability of a biped humanoid: walking speed and actuator specifications,” Intelligent Robots and Systems, 2001. Proc. 2001 IEEE/RSJ Int. Conf., vol 1, pp. 253-258, Nov. 2001.
[24] P. Sardain and G. Bessonnet, “Forces acting on a biped robot. Center of pressure-zero moment point,” Systems, Man and Cybernetics, Part A, IEEE Trans., vol 34, pp. 630-637, Sept. 2004.
[25] A. Goswami, “Foot rotation indicator (FRI) point: a new gait planning tool to evaluate postural stability of biped robots,” Robotics and Automation, 1999. Proc. 1999 IEEE Int. Conf., vol 1, pp. 47-52, May 1999.
[26] P. Sardain and G. Bessonnet, “Zero moment point-measurements from a human walker wearing robot feet as shoes,” Systems, Man and Cybernetics, Part A, IEEE Trans., vol 34, pp. 638-648, Sept. 2004.
[27] D. Kim, S. J. Seo, and G. T. Park, “Zero-moment point trajectory modelling of a biped walking robot using an adaptive neuro-fuzzy system,” Control Theory and Applications, IEE Proc., vol 152, pp. 411-426, July 2005.
[28] F. Asano, M. Yamakita, N. Kamamichi, and Z. W. Luo, “A novel gait generation for biped walking robots based on mechanical energy constraint,” Robotics and Automation, IEEE Trans., vol 20, pp. 565-573, June 2004.
[29] A. E. Patla, “Strategies for dynamic stability during adaptive human locomotion,” Engineering in Medicine and Biology Magazine, IEEE, vol 22, pp. 48-52, March-April 2003.
[30] F. Gravez, B. Mohamed, and F. B. Ouezdou, “Dynamic simulation of a humanoid robot with four DOFs torso,” Robotics and Automation, 2002. Proc. ICRA '02. IEEE Int. Conf., vol 1, pp. 511-516, May 2002.
[31] P. Gorce, and O. Vanel, “High level strategy to control the dynamic evolutions of bipedal postures,” Systems, Man, and Cybernetics, 1996., IEEE Int. Conf., vol 2, pp. 1459-1464, Oct. 1996.
[32] F. Gubina, H. Hemami, and R. B. McGhee, “On the dynamic stability of biped locomotion,” IEEE Trans. Bio-Med. Eng., vol. BME-21, no. 2, pp. 102–108, 1974.
[33] O. Matsumoto, S. Kajita, M. Saigo, and K. Tani, “Dynamic trajectory control of passing over stairs by a biped type leg-wheeled robot with nominal reference of static gait,” Intelligent Robots and Systems, 1998. Proc., 1998 IEEE/RSJ Int. Conf., vol 1, pp. 406-412, Oct. 1998.
[34] J. S. Yang and A. Shahabuddin, “Trajectory planning and control for a five-degree-of-freedom biped locomotion system,” American Control Conf., vol 3, pp. 3105-3109, 29 June-1 July, 1994.
[35] T. G. McGee and M. W. Spong, “Trajectory planning and control of a novel walking biped,” Control Applications, 2001. (CCA '01). Proc. of the 2001 IEEE Int. Conf., pp. 1099-1104, Sept. 2001.
[36] H. O. Lim, Y. Yamamoto, and A. Takanishi, “Control to realize human-like walking of a biped humanoid robot,” Systems, Man, and Cybernetics, 2000 IEEE Int. Conf., vol 5, pp. 3271-3276, Oct. 2000.
[37] S. Ito, Y. Aoyama, and H. Kawasaki, “A static balance control under periodic external force,” SICE 2003 Annual Conf., vol 2, pp. 1967-1972, Aug. 2003.
[38] M. N Raibert, Legged Robots That Balance. Cambridge, MA: MIT Press, 1986.
[39] C. L. Shih, Y. Z. Li, S. Churng, T. T. Lee, and W. A. Cruver, “Trajectory synthesis and physical admissibility for a biped robot during the singlesupport phase,” in Proc. IEEE Int. Conf. Robotics and Automation, 1990, pp. 1646–1652.
[40] A. Dasgupta and Y. Nakamura, “Making feasible walking motion of humanoid robots from human motion capture data,” in Proc. IEEE Int. Conf. Robotics and Automation, 1999, pp. 1044–1049.
[41] J. H. Park and H. C. Cho, “An On-line Trajectory Modifier for the Base Link of Biped Robots to Enhance Locomotion stability,” Proc. IEEE Int. Conf. on Robotics and Automation, 2000, pp. 3353–3358
[42] J. H. Park and Y. K. Rhee, “ZMP trajectory generation for reduced trunk motions of biped robots,” Intelligent Robots and Systems, 1998. Proc., 1998 IEEE/RSJ Int. Conf., vol 1, pp. 90-95, Oct. 1998.
[43] A. Takanish, M. Tochizawa, H. Karaki, and I. Kato, “Dynamic biped walking stabilized with optimal trunk and waist motion,” Proc. IEEE=RSJ Internat. Workshop on Intelligent Robotics and Systems, Tsukuba, Japan, pp. 187–192, 1989.
[44] J. H. Park, “Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots,” Fuzzy Sets and Systems, vol 134, pp. 189-203, February 2003.
[45] T. McGeer, “Passive walking with knees,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 1640–1645, 1990.
[46] P. H. Channon, S. H. Hopkins, and D. T. Phan, “Derivation of optimal walking motions for a biped walking robot,” Robotica, vol. 10, no. 2, pp. 165–172, 1992.
[47] M. Rostami and G. Bessonnet, “Impactless sagittal gait of a biped robot during the single support phase,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 1385–1391, 1998.
[48] L. Roussel, C. Canudas-de-Wit, and A. Goswami, “Generation of energy optimal complete gait cycles for biped robots,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 2036–2041, 1998.
[49] F. M. Silva and J. A. T. Machado, “Energy analysis during biped walking,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 59–64, 1999.
[50] T. A. McMahon, Muscles, Reflexes, and Locomotion, Princeton, NJ: Princeton Univ. Press, 1984.
[51] V. T. Inman, H. J. Ralston, and F. Todd, Human Walking, Baltimore, MD: Willams & Wilkins, 1981.
[52] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair mechanisms based on matrices,” Journal of Applied Mechanics, ASME, vol. 22, pp. 215-221, 1995.
[53] M. Vukobratovic, A. A. Frank, and D. Juricic, “On the stability of biped locomotion,” IEEE Trans. Biomed. Eng. 17 (1). pp. 25-36, 1970.
[54] M. Vukobratovic, B. Borovac, D. Surla, and D. Stokic, Biped Locomotion -Dynamics Stability Control and Applications, Springer-Verlag, 1990.
[55] R. K. Jha, B. Singh, and D. K. Pratihar, “On-line stable gait generation of a two-legged robot using a genetic–fuzzy system,” Robotics and Autonomous Systems , vol 53, Issue 1, pp. 15-35, October 31, 2005.
[56] http://www.fira.net/
[57] http://www.robocup.org/
[58] http://world.honda.com/ASIMO/
[59] http://www.sony.net/SonyInfo/QRIO/top_nf.html
[60] http://www.kondo-robot.com/
[61] http://times.hankooki.com/lpage/tech/200411/kt2004112316265112350.htm
[62] http://www.kawada.co.jp/global/ams/hrp_2.html
[63] http://www.altera.com