| 研究生: | 吳柏漢 Wu, Bo-Han | 
|---|---|
| 論文名稱: | 利用全球導航衛星系統反射接收儀之延遲–都卜勒映射資料實現窄帶連續波干擾源定位 Localization of Narrowband CW Interferer Using GNSS-R Delay-Doppler Maps | 
| 指導教授: | 莊智清 Juang, Jyh-Ching | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 電機資訊學院 - 電機工程學系 Department of Electrical Engineering | 
| 論文出版年: | 2025 | 
| 畢業學年度: | 113 | 
| 語文別: | 英文 | 
| 論文頁數: | 73 | 
| 中文關鍵詞: | 全球衛星導航系統反射接收儀 、延遲–都卜勒映射資料 、射頻干擾定位 、窄帶連續波干擾 、都卜勒頻移估計 | 
| 外文關鍵詞: | GNSS-R, Delay-Doppler Map, RF Interference Localization, Narrowband CW Interference, Doppler Shift Estimation | 
| 相關次數: | 點閱:4 下載:2 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
當全球導航衛星系統 (GNSS) 之頻段受到干擾時,全球導航衛星系統反射接收儀 (GNSS-R) 的延遲–都卜勒映射圖(Delay-Doppler Map)資料的訊雜比顯著下降,使得風速反演等典型任務難以展開。本研究針對此類資料開發全新應用,提出僅基於單一GNSS-R衛星延遲–都卜勒映射資料反推出窄帶單頻或多頻連續波類干擾源位置的方法。首先,針對此類干擾在延遲–都卜勒映射資料上呈現的條紋特徵提取都卜勒頻移,並參考相關文獻方法,利用最小二乘估計(LSE)構建同時包含都卜勒頻移與頻移率的代價函數;隨後於以經緯度–頻偏空間中進行網格搜尋以完成粗定位;最終採用梯度下降演算法,對發射源位置與頻偏參數進行精細定位。為驗證方法可行性,實驗分別以通用軟體無線電平台 (USRP) 產生模擬射頻訊號輸入獵風者衛星同款GNSS-R 接收機產生之延遲–都卜勒映射資料,以及獵風者衛星實際受干擾的延遲–都卜勒映射資料上進行測試。結果顯示,本方法將定位誤差控制在數十公里量級,可應用於干擾發射源的大範圍初步定位,輔助後續精準跟蹤。
When Global Navigation Satellite System (GNSS) frequency bands are affected by interference, the signal-to-noise ratio (SNR) of Global Navigation Satellite System-Reflectometry (GNSS-R) Delay-Doppler Map (DDM) data drops significantly, hindering conventional applications such as wind speed retrieval. This study proposes a novel use of such data: a method for locating narrowband continuous wave (CW) interference sources, whether single- or multi-frequency—using only DDM data from a single GNSS-R satellite. The approach begins by extracting Doppler shifts from the stripe-like features caused by the interference in DDM. Building on existing methods, a cost function incorporating both Doppler shifts and their rates is formulated using least squares estimation (LSE). A coarse localization is then performed through grid search in the latitude–longitude–frequency shift space, followed by fine-tuning using a gradient descent algorithm to estimate the emitter’s position and frequency parameters. To validate the approach, experiments are conducted using both simulated Radio Frequency (RF) signals generated with a Universal Software Radio Peripheral (USRP) and actual interference-affected DDM data from the TRITON GNSS-R satellite. Results show that the method can constrain the localization error to within tens of kilometers, making it suitable for large-scale preliminary localization of interference transmitters and aiding subsequent precise tracking.
[1]	S. Gleason, S. Hodgart, Y. Sun, C. Gommenginger, S. Mackin, M. Adjrad, and M. Unwin, "Detection and Processing of Bistatically Reflected GPS Signals from Low Earth Orbit for the Purpose of Ocean Remote Sensing," IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 6, pp. 1229-1241, June 2005, doi: 10.1109/TGRS.2005.845643.
[2]	A. Camps, H. Park, M. Pablos, G. Foti, C. P. Gommenginger, P.-W. Liu, and J. Judge, "Sensitivity of GNSS-R Spaceborne Observations to Soil Moisture and Vegetation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 10, pp. 4730-4742, Oct. 2016, doi: 10.1109/JSTARS.2016.2588467.
[3]	C. Ruf, M. Unwin, J. Dickinson, R. Rose, D. Rose, M. Vincent, and A. Lyons, "CYGNSS: Enabling the Future of Hurricane Prediction [Remote Sensing Satellites]," IEEE Geoscience and Remote Sensing Magazine, vol. 1, no. 2, pp. 52-67, June 2013, doi: 10.1109/MGRS.2013.2260911.
[4]	J. -C. Juang, Y. -F. Tsai and C. -T. Lin, "TRITON GNSS-R Mission: Preliminary Results and Perspectives," IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024, pp. 6725-6728, doi: 10.1109/IGARSS53475.2024.10642499.
[5]	J. Querol, A. Alonso-Arroyo, R. Onrubia, D. Pascual, H. Park and A. Camps, "SNR Degradation in GNSS-R Measurements Under the Effects of Radio-Frequency Interference," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 10, pp. 4865-4878, Oct. 2016, doi: 10.1109/JSTARS.2016.2597438.
[6]	K. Wu, Y. Morton, C. Chew, "Detection and mitigation of radio frequency interference in GNSS-R data," in Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), 2022, pp. 3677–3688.
[7]	J. Querol, R. Onrubia, D. Pascual, J. Castellvi-Esturi, H. Park and A. Camps, "RFI Analysis and Mitigation in Airborne GNSS-R Campaign," IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018, pp. 1237-1240, doi: 10.1109/IGARSS.2018.8518827.
[8]	Y. Soldo and D. M. Le Vine, "Characteristics of the RFI Environment at L-band as Observed from SMAP, " NASA/TM–20210000962, NASA Goddard Space Flight Center, Greenbelt, MD, Mar. 2021. 
[9]	J. Park, J. T. Johnson, N. Majurec, N. Niamsuwan,  J. R. Piepmeier, P. N. Mohammed, C. S. Ruf, S. Misra, S. H. Yueh, and S. J. Dinardo, "Airborne L-Band Radio Frequency Interference Observations From the SMAPVEX08 Campaign and Associated Flights," IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 9, pp. 3359-3370, Sept. 2011, doi: 10.1109/TGRS.2011.2107560.
[10]	P. Ellis, D. V. Rheeden and F. Dowla, "Use of Doppler and Doppler Rate for RF Geolocation Using a Single LEO Satellite," IEEE Access, vol. 8, pp. 12907-12920, 2020, doi: 10.1109/ACCESS.2020.2965931.
[11]	J. Shao, Mathematical Statistics, 2nd ed. New York, NY, USA: Springer, 2003.
[12]	P. J. Huber and E. M. Ronchetti, Robust Statistics, 2nd ed. Hoboken, NJ, USA: Wiley, 2009.
[13]	W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. New York, NY, USA: Cambridge University Press, 2007.
[14]	N. R. Draper and H. Smith, Applied Regression Analysis, 3rd ed. New York, NY, USA: Wiley, 1998. 
[15]	V. U. Zavorotny, S. Gleason, E. Cardellach, and A. Camps, "Tutorial on remote sensing using GNSS bistatic radar of opportunity, " IEEE Transactions on Geoscience and Remote Sensing. Mag., vol.  2, no.  4, pp.  8–45, Dec. 2014.
[16]	D. Kingma, J. Ba, "Adam: A Method for Stochastic Optimization," in Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2015.
[17]	T. Ebinuma, "GPS-SDR-SIM: Software-Defined GPS Signal Simulator, " GitHub repository, [Online]. Available: https://github.com/osqzss/gps-sdr-sim. [Accessed: Feb. 16, 2025].
[18]	Taiwan Analysis Center for COSMIC, "TRITON Data Download, " [Online]. Available: https://tacc.cwa.gov.tw/v2/triton_download.html. [Accessed: Jul. 14, 2025].
[19]	Radio Dabanga, "RSF Drone Attack Hits Airport Fuel Depot in Sudan’s Northern State," Dabanga Sudan, Feb. 12, 2024. [Online]. Available: https://www.dabangasudan.org/en/all-news/article/rsf-drone-attack-hits-airport-fuel-depot-in-sudans-northern-state.