簡易檢索 / 詳目顯示

研究生: 吳雷根
Wu, Lei-Ken
論文名稱: 曾文水庫枯水期長期入流量預測之研究
A study on Long-term Inflow Forecasting of Tsengwen Reservoir during the Dry Seasons
指導教授: 游保杉
Yu, Pao-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 78
中文關鍵詞: 連續型降雨-逕流模式長期天氣展望入流量預報系統
外文關鍵詞: inflow forecasting system, continuous rainfall-runoff model, long-term weather outlook
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   水庫放水操作經常以水庫上游集水區之入流量為參考依據,倘能事先精確地預測入流量將有助於水庫之操作管理。鑒此,本研究擬開發水庫枯水期長期入流量預報系統並應用於曾文水庫上游集水區,以支援水庫管理單位進行放水操作決策與乾旱預警之參考。

      水庫枯水期長期入流量預報系統係結合連續型降雨-逕流模式與氣象局長期天氣展望之預報結果,來進行水庫未來三旬入流量預報。本文主要研究內容包含:(1)配合水庫操作嘗試修正降雨-逕流模式以旬為演算單位、(2)修正中央氣象局之長期天氣展望資料使適用研究地區、(3)進行未來三旬水庫入流量預報,與(4)開發視窗化入流量預報系統以便使用者進行操作。模式率定與驗證工作採用曾文水庫28年之歷史資料進行,分析結果發現:本模式以旬為時間單位模擬降雨-逕流間行為有良好精度。由於傳統水庫操作對於未來入流量之預報是以歷年旬入流量平均值為參考基準,因此本研究將進一步比較此系統之預報與直接利用平均值參考基準等兩種方式之優劣,比較結果得知:本研究之入流量預報系統有較好之結果。最後,本研究將採用Visual Basic結合Fortran程式語言撰寫視窗化入流量預報系統,使得本入流量預報系統更具親和力。

      Long-term inflows of reservoir form upstream catchment are important information for reservoir operation. If the inflows of reservoir can be forecasted precisely beforehand, that may benefit the reservoir operation and management. Therefore, we attempt to develop a long-term inflow forecasting system of reservoir during the dry seasons and apply the system in the upstream catchment of Tsengwen reservoir, which is to support the reservoir management for operation decision and drought warning.

      The long-term inflow forecasting system of reservoir that combines a continuous rainfall-runoff model with the long-term weather outlook provided by the Central Weather Bureau to forecast three ten-day ahead inflows. There are several tasks in the present study, including (1) developing a rainfall-runoff model based on ten-day time scale in order to match up the time scale of reservoir operation, (2) proposing a transforming method to correct the long-term weather outlook for the study area, (3) forecasting one to three ten-day ahead inflows of reservoir, and (4) developing a window-based long-term inflow forecasting system of reservoir to provide users with convenient operation. Model calibration and verification were performed from 28-year historical records, and the results reveal the continuous rainfall-runoff model has good performances on ten-day flow simulation. One to three ten-day ahead inflows forecasted in the study were compared with the historical average ten-day inflows, which are always chosen as a reference for reservoir classical operation. The comparison indicates that the proposed inflow forecasting system has better results for one to three ten-day inflow forecasting. Finally, we use the Visual-Basic 6.0 software coupled with Fortran software to develop a window-based long-term inflow forecasting system of reservoir.

    中文摘要 I Abstract II 謝誌 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 前言 1 1-1研究動機與目的 1 1-2文獻回顧 1 1-3本文組織架構 4 第二章 研究區域概述 6 2-1地理位置 6 2-2地文特性 7 2-3氣象及水文特性 8 第三章 連續型降雨-逕流模式之率定與驗證 13 3-1 HBV模式架構 14 3-1-1土壤含水量作用部份 14 3-1-2逕流反應部份 15 3-1-3連續方程式 16 3-2參數率定方法 17 3-2-1目標函數 17 3-2-2全域最佳化方法 18 3-3評鑑指標 21 3-4模式參數率定及驗證 22 3-4-1目標函數設定 22 3-4-2模式參數率定及驗證 23 3-5討論 24 第四章 長期天氣展望之空間轉換方法 39 4-1排序法 39 4-2回歸方法 40 4-3類神經法 41 4-4不同空間轉換方法之比較 42 4-5結語 43 第五章 結合水文模式與月長期天氣展望預報水庫枯水期入流量 50 5-1水庫枯水期長期入流量預報方法 50 5-2水庫枯水期長期入流量預報系統之架構 50 5-3預報結果 51 5-4討論 52 第六章 視窗化入流量預報系統之建構 64 6-1入流量預報系統之主視窗 64 6-2降雨-逕流模式介紹之視窗 65 6-3旬模式參數率定之視窗 65 6-4旬模式流量模擬之視窗 65 6-5未來三旬入流量預報之視窗 66 第七章 結論與建議 72 7-1結論 72 7-2建議 73 參考文獻 75

    1. 張斐章、徐國麟,1990年,「兩種推估低流量方法之探討」,臺灣水利季刊,第三十八卷,第一期,第48-57頁。

    2. 黃俊銘,1997年,「曾文水庫集水區旬降雨-逕流模式之研究」,國立成功大學水利及海洋工程研究所,碩士論文。

    3. 黃世陽、吳明哲,1998年,「VISUAL BASIC 6.0 學習範本」,松崗電腦圖書資料股份有限公司。

    4. 曾文水庫集水區航測調查報告,1997年6月。

    5. 楊道昌、游保杉,1997年,「目標函數對連續型降雨-逕流模式率定之影響」,臺灣水利季刊,第四十五卷,第四期,第66-73頁。

    6. 楊道昌,1999年,「區域連續型降雨—逕流模之研究」,國立成功大學水利及海洋工程研究所,博士論文。

    7. 葉怡成,1999年,「類神經網路模式應用與實作」,儒林圖書有限公司。

    8. Bako, M. D. and Hunt, D. N., 1988, “Derivation of baseflow recession constant using computer and numerical analysis”, Hydrological Sciences - Journal - des Sciences Hydrologiques, 33(4), pp. 357-367.

    9. Bako, M. D. and Owoade, A., 1988, “Field application of a numerical method for the derivation of baseflow recession constant”, Hydrological Processes, 2, pp. 331-336.

    10. Bergström, S., 1972, “Development and application of a digital runoff model, in Sweden”, SMHI, Notiser och preliminära rapporter, serie HYDRLOLOGI, (22), Norrköping.

    11. Bergström, S., 1976, “Development and application of a conceptual runoff model for Scandinavian Catchments”, SMHI, Reports RHO, (7), Norrköping.

    12. Bergström, S., 1992, “The HBV model-its structure and applications”, SMHI, Reports RH, (4), Norrköping.

    13. Bouhton, W. C., 1986, “Linear and curvilinear baseflow recessions”, Journal of Hydrology, 25(1), pp. 41-48.

    14. Coulibaly, P., Anctil, F. and Bobee, B., 2000, “Daily reservoir inflow forecasting using artificial neural networks with stopped training approach”, Journal of Hydrology, 230(3-4), pp. 244-257.

    15. Duan, Q., Sorooshian, S. and Gupta, V. K., 1992, “Effective and efficient global optimization for conceptual rainfall-runoff models”, Water Resources Research, 28(4), pp. 1015-1031.

    16. Duan, Q., Gupta, V. K. and Sorooshian, S., 1993, “Shuffled complex evolution approach for effective and efficient global minimization”, Journal of Optimization Theory and Application, 76(3), pp. 501-521.

    17. Duan, Q., Sorooshian, S. and Gupta, V. K., 1994, “Optimal use of the SCE-UA global optimization method for calibrating watershed models”, Journal of Hydrology, Vol. 158(3-4), pp. 265-284.

    18. Hamon, W. R., 1961, “Estimating potential evapotranspiration”, Journal of Hydraulics Division, 87(3), pp. 107-120.

    19. Hsu, K. L., Hoshin, V. G. and Soroosh, S., 1995, “Artificial neural network modeling of the rainfall-runoff process”, Water Reasources Research, 31(10), pp. 2517-2530.

    20. Irvine K. N. and Eberhardt A. J., 1992, “Multiplicative, Season ARIMA models for lake Erie and lake Ontario water levels”, Water Resources Bulletin, 28(2), pp. 385-396.

    21. Jayawardena, A. W. and Lai, F., 1994, “Analysis and prediction of chaos in rainfall and stream flow time series”, Journal of Hydrology, 153(1-4), pp. 23-52.

    22. Kember, G. and Flower, A. C., 1993, “Forecasting river flow using nonlinear dynamics”, Stochastic Hydrology and Hydraulics, 7, pp. 205-212.

    23. Kothyari, U. C., 1995, “Estimation of monthly runoff from small catchments in India”, Hydrological Sciences - Journal - des Sciences Hydrologiques, 40(4), pp.
    533-541.

    24. Lindström, G., Johansson, B., Persson, M., and Gardlin, M., 1997, “Development and test of the distributed HBV-96 hydrological model”, Journal of Hydrology, 201(1-4), pp. 272-288.

    25. Lindén, R. and Harlin, J., 2000, “Analysis of conceptual rainfall-runoff modeling performance in different climates”, Journal of Hydrology, 238(3-4), pp. 231-247.

    26. Madsen, H., Wilson, G. and Ammentorp, H. C., 2002, “Comparison of different automated strategies for calibration of rainfall-runoff models, Journal of Hydrology, 261(1-4), pp. 48-59.

    27. Madsen, H., 2003, “Parameter estimation in distributed hydrological catchment modeling using automatic calibration with multiple objectives”, Advance in Water Resourses, 26(2), pp. 205-216.

    28. Mimikou, M. and Rao, A. R., 1983, “Regional monthly rainfall-runoff model”, Journal of Water Resources Planning and Management, ASCE, 109(1), pp. 75-93.

    29. Muftuoglu, R. F., 1991, “Monthly runoff generation by non-linear models”, Journal of Hydrology, 125(3-4), pp. 277-291.

    30. Nelder, J. A. and Mead R., 1965, “A simplex method for function minimization”, Computer Journal, 3, pp. 308-313.

    31. Sajikumar, N. and Thandaveswara, B. S., 1999, “A non-linear rainfall -runoff model using an artificial neural network”, Journal of Hydrology, 216(1-2), pp. 32-55.

    32. Seibert, J., 1997, “Estimation of parameter uncertainty in the HBV model”, Nordic Hydrolohy, 28(4/5), pp. 247-262.

    33. Seibert, J., 1999, “Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure”, Hydrological Sciences-Journal-des Sciences Hydrologiques, 44(5), pp. 779-797.

    34. Singh, V. P., 1995, “Computer models of watershed hydrology”, Water Resources Publications, Highlands Ranch, Colorado, U.S.A..

    35. Smith J. A., 1991, “Long-range streamflow forecasting using non- parametric regression”, Water Resources Bulletin, 27(1), pp. 39-46.

    36. Sorooshian, S., Duan, Q. and Gupta, V. K., 1993, “Calibration of the SMA-NWSRFS conceptual rainfall-runoff model using global optimization”, Water Resources Research, 29(4), pp. 1185-1194.

    37. Tallaksen, L. M., 1995, “A review of baseflow recession analysis”, Journal of Hydrology, 165(1-4), pp. 349-370.

    38. Vogel, R. M. and Kroll, C. N., 1996, “Estimation of baseflow recession constants”, Water Resources Management, 10(4), pp. 303-320.

    39. Yapo, P. O., Gupta, H. V., and Sorosshian, S., 1998, “Multi-objective global optimization for hydrologic models”, Journal of Hydrology, 204(1-4), pp. 83-97.

    40. Zhang, X. and Lindström, G., 1997, “Developed of an automatic calibration scheme for the HBV hydrological model”, Hydrological Processes, 11(12), pp.1671-1682.

    下載圖示 校內:立即公開
    校外:2004-07-27公開
    QR CODE