| 研究生: |
沈紘宇 Shen, Hung-Yu |
|---|---|
| 論文名稱: |
非接觸式電能傳輸之新型感應耦合結構設計 Novel Inductively Coupled Structures for Contactless Power Transfer |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 非接觸式電能傳輸 、三相感應耦合結構 、電能拾取器 、感應充電槳 、線型感應供電軌道 、電動車感應充電站 |
| 外文關鍵詞: | Contactless power transfer, Three-phase inductively coupled structure, Power pickup, Charging paddle, Linear power track, EV Inductive charging station |
| 相關次數: | 點閱:191 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在應用非接觸式感應電能傳輸技術,設計新型感應耦合結構及其關鍵系統電路,俾便建構具高系統性能與高電能傳輸效率之非接觸式電動車充電站與電動搬運車用線型感應供電軌道系統。文中針對線型感應供電軌道提出具封閉與可拆卸機制之雙環形單相電能拾取器,藉由匹配拾取器鐵芯外形與軌道所產生空間磁場拓樸,達成耦合結構間之高效率感應電能傳輸。本文並進一步提出一新型半封閉式Y形三相電能拾取器,以具有三相對稱與封閉磁路之鐵芯結構達成磁通路徑分享與低磁阻路徑效果,有效提昇系統功率傳輸能力與拾取器之鐵芯利用率。本論文另就電動車用定點式墊型與插入式槳型感應充電站,分別提出單相編織型充電墊與新型三相充電槳。充電站運用所提編織型充電墊與線圈重疊式電能拾取器,可提昇耦合結構間之垂直傳輸距離,並於充電區域產生均勻互感分佈,得以解決充電時結構間需精確對位之問題。所提新型充電槳採三相對稱式弧形鐵芯結構堆砌而成,各相磁通共享低磁阻路徑,得以達均勻能量傳輸潮流與高功率乘載能力目的。文末針對非接觸式電動車充電站與線型感應供電軌道應用類型,實際製作四組原型系統進行新型感應耦合結構相關效能測試與所提等效磁路模型精確性之驗證。實驗結果顯示,所提新型感應耦合結構相較於傳統者確實可有效提昇非接觸式電動車充電站與線型感應供電軌道系統之整體效能。
This dissertation aims at the design of novel inductively coupled structures and key hardware technologies for the contactless electric vehicle (EV) charging station and linear inductive power track by applying the contactless power transfer technique. Firstly, both the single-phase closed-shape dual ring pickup and three-phase closed Y-shaped pickup are presented in this dissertation. The pickup with high coupling ability is able to be reached by matching the shape of core material with the magnetic field pattern of bipolar track cable. Besides, the flux path sharing and low reluctance is achieved in the core material of three-phase closed Y-shaped pickup by shaping the pickup in three-phase symmetric and close structures. Consequently, the coupling performance of the linear inductive power track system is enhanced. Secondly, the single-phase weaving-type pad and three-phase new-type paddle are developed for contactless EV stationary and plug-in charging stations. For the stationary charging, the proposed inductively coupled structure, which consists of weaving-type coil and overlapping coil, is fabri¬cated to obtain a uniform profile of mutual inductance over the charging surface and to solve the issue in which the EV has to be placed exactly on a specific area. In addition, the paddle with the proposed arc-shape three-phase core structure in the plug-in charging station is able to achieve higher smoothness of power flow and higher power capability due to the sharing of flux path and low reluctance in the core material. Finally, the four laboratory prototypes with the proposed inductively coupled structures are implemented and tested. The fundamental experiments are carried out and then the efficiency and coupling performance are demon¬strated to validate the calculation accuracy of magnetic equivalent circuits. The experiment data show that the performance of contactless EV charging station and linear inductive power track is able to be improved with the proposed inductively coupled structures.
[1] E. Abel and S. Third, “Contactless power transfer- an exercise in topology,” IEEE Trans. Magn., vol. 20, no. 5, pp. 1813-1815, Sep. 1984.
[2] S. I. Adachi, F. Sato, S. Kikuchi, and H. Matsuki, “Consideration of contactless power station with selective excitation to moving robot,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3583-3585, Sep. 1999.
[3] H. Ayano, K. Yamamoto, N. Hino, and I. Yamato, “Highly efficient contactless electrical energy transmission system,” in Proc. IEEE IECON’02, 2002, Spain, pp. 1364-1369.
[4] A. Balakrishnan, W. T. Joines, and T. G. Wilson, “Air-gap reluctance and inductance calculations for magnetic circuits using a Schwarz-Christoffel transformation,” IEEE Trans. Power Electron., vol. 12, no. 4, pp. 654-663, Jul. 1997.
[5] J. M. Barnard, J. A. Ferreira, and J. D. Wyk, “Sliding transformers for linear contactless power delivery,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 774-779, Dec. 1997.
[6] T. Bieler, M. Perrottet, V. Nguyen, and Y. Perriard, “Contactless power and information transmission,” IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1266-1272, Sep./Oct. 2002.
[7] K. J. Binns, P. J. Lawrenson, and C. W. Trowbridge, The Analytical and Numerical Solution of Electric and Magnetic Fields. New York : John Wiley & Sons, 1992.
[8] J. T. Boys, G. A. Covic, and G. A. J. Elliott, “Pick-up transformer for ICPT applications,” Electron. Lett., vol. 38, no. 21, pp. 1276-1278, Oct. 2002.
[9] J. T. Boys, G. A. Covic, and Y.-X. Xu, “DC analysis technique for inductive power transfer pick-ups,” IEEE Power Electron Lett., vol. 1, no. 2, pp. 51-53, Jun. 2003.
[10] J. T. Boys, G. A. J. Elliott, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333-335, Jan. 2007.
[11] W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 9, pp. 1230-1242, Sep. 1984.
[12] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, Jul. 2009.
[13] J. J. Casanova, Z. N. Low, and J. S. Lin, “A loosely coupled planar wireless power system for multiple receivers,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 1801-1812, Aug. 2009.
[14] C. C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 704-718, Apr. 2007.
[15] C.-J. Chen, T.-H. Chu, C.-L. Lin, and Z.-C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 7, pp. 536-540, Jul. 2010.
[16] S. Cheon, Y. H. Kim, S. Y. Kang, M. L. Lee, J. M. Lee, and T. Zyung, “Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2906-2914, Jul. 2011.
[17] Y. D. Chung, C. Y. Lee, D. W. Kim, Y. S. Yoon, H. C. Jo, and Y. J. Hwang, “Operating characteristics of contactless power transfer from HTS antenna to copper receiver with inserted resonator through large air gap,” IEEE Trans. Appl. Supercond., vol. 24, no. 3, pp. 500205-3-500205-5, Jun. 2014.
[18] G. A. Covic and J. T. Boys, “Inductive power transfer,” Proc. IEEE, vol. 101, no. 6, pp. 1276-1289, Jun. 2013.
[19] G. A. Covic and J. T. Boys, “Modern trends in inductive power transfer for transportation applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 1, no. 1, pp. 28-41, Mar. 2013.
[20] G. A. Covic, J. T. Boys, T. M. Budhia, and C. Y. Huang, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318-328, 2013.
[21] G. A. Covic, J. T. Boys, M. L. G. Kissin, and H. G. Lu, “A three-phase inductive power transfer system for roadway-powered vehicles,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3370-3378, Dec. 2007.
[22] G. A. Covic, G. A. J. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. Int. Conf. Power Syst. Technol., 2000, Perth, pp. 79-84.
[23] H. W. Derbas, J. M. Williams, A. C. Koenig, and S. D. Pekarek, “A comparison of nodal- and mesh-based magnetic equivalent circuit models,” IEEE Trans. Energy Convers., vol. 24, no. 2, pp. 388-396, May 2009.
[24] T. P. Duong and J.-W. Lee, “Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 442-444, Aug. 2011.
[25] A. Ecklebe and A. Lindemann, “Analysis and design of a contactless energy transmission system with flexible inductor positioning for automated guided vehicles,” in Proc. IEEE IECON’06, 2006, Paris, pp. 1721-1726.
[26] M. G. Egan, J. M. D. Murphy, J. G. Hayes, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Trans. Ind. Appl., vol. 35, no. 4, pp. 884-895, Jul./Aug. 1999.
[27] M. Eghtesadi, “Inductive power transfer to an electric vehicle-analytical model,” in Proc. IEEE 40th Veh. Tech. Conf., 1990, Orlando, pp. 100-104.
[28] G. A. J. Elliot, J. T. Boys, and G. A. Covic, “A design methodology for flat pick-up ICPT systems,” in Proc. IEEE ICIEA’06, 2006, Singapore, pp. 1-7.
[29] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. Int. Conf. Power Electron. Drive Syst., 1995, Singapore, pp. 797-801.
[30] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, Oct. 2006.
[31] G. A. J. Elliott, S. Raabe, G. A. Covic, and J. T. Boys, “Multiphase pickups for large lateral tolerance contactless power-transfer systems,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1590-1598, May 2010.
[32] A. Esser, “Contactless charging and communication for electric vehicles,” IEEE Ind. Appl. Mag., vol. 1, no. 6, pp. 4-11, Nov./Dec. 1995.
[33] P. E. Glaser, ‘‘Power from the sun: its future,’’ Science, vol. 162, pp. 867-886, 1968.
[34] A. W. Green and J. T. Boys, “10 kHz inductively coupled power transfer-concept and control,” in Proc. 5th Int. Conf. Power Electron. Variable-Speed Drives, 1994, London, pp. 694-699.
[35] Y. Hiraga, J. Hirai, Y. Kaku, Y. Nitta, A. Kawamura, and K. Ishioka, “Decentralized control of machines with the use of inductive transmission of power and signal,” in Proc. IEEE Ind. Appl. Soc. Annu. Meeting, 1994, Denver, pp. 875-881.
[36] J. Hirai, T. W. Kim, and A. Kawamura, “Practical study on wireless transmission of power and information for autonomous decentralized manufacturing system,” IEEE Trans. Ind. Electron., vol. 46, no. 2, pp. 349-359, Apr. 1999.
[37] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
[38] T. Imura and Y. Hori, “Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and neumann formula,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4746-4752, Oct. 2011.
[39] D. Kacprzak, “A novel S-pickup for high power inductive power transfer systems,” in Proc. IEEE Int. Magn. Conf., 2006, San Diego, p. 204.
[40] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. 7th Int. Power Engineering Conf. 2005, Singapore, pp. 1133-1136.
[41] D. Kacprzak, G. A. Covic, and J. T. Boys, “Optimization of inductively coupled power transfer system with flat pickups,” in Proc. IEEE Int. Magn. Conf., 2003, Boston, p. ER-20.
[42] Y. Kamiya, Y. Daisho, K. Kobayashi, and T. Pontefract, “Development and performance evaluation of a non-contact rapid charging inductive power supply system for electric micro-bus,” in Proc. IEEE Veh. Power Propul. Conf., 2011, Chicago, pp. 1-6.
[43] M. P. Kazmierkowski and A. J. Moradewic, “Unplugged but connected: review of contactless energy transfer systems,” IEEE Ind. Electron. Mag., vol. 6, no. 4, pp. 47-55, Dec. 2012.
[44] A. Khaligh and S. Dusmez, “Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles,” IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3475-3489, Oct. 2012.
[45] M. Kiani and M. Ghovanloo, “The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 9, pp. 536-540, Sep. 2012.
[46] M. Kiani, U. M. Jow, and M. Ghovanloo, “Design and optimization of a 3-coil inductive link for efficient wireless power transmission,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 579-591, Dec. 2011.
[47] C. G. Kim, D. H. Seo, J. S. You, J. H. Park, and B. H. Cho, “Design of a contactless battery charger for cellular phone,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1238-1247, Dec. 2001.
[48] J. W. Kim, H. C. Son, D. H. Kim, and Y. J. Park, “Optimal design of a wireless power transfer system with multiple self-resonators for an LED TV,” IEEE Trans. Consum. Electron., vol. 58, no. 3, pp. 775-780, Sep. 2012.
[49] M. L. G. Kissin, G. A. Covic, and J. T. Boys, “Steady-state flat-pickup loading effects in polyphase inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2274-2282, Jun. 2011.
[50] K. W. Klontz, D. M. Divan, and D. W. Novotny, “An actively cooled 120 kW coaxial winding transformer for fast charging electric vehicles,” IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 1257-1263, Nov./Dec. 1995.
[51] K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with ‘universal’ inductive interface,” in Proc. Power Conv. Conf., 1993, Yokohama, pp. 227-232.
[52] A. Kurs, R. Moffatt, and M. Soljacic, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett., vol. 317, no. 5834, pp. 83-86, Jan. 2007.
[53] R. Laouamer, M. Brunello, J. Ferrieux, O. Normand, and N. Buchheit, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON’97, 1997, New Orleans, pp. 792-797.
[54] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
[55] K. C. Lee, J. W. Moon, M. C. Lee, J. M. Kim, J. W. Kim, and D. H. Koo, “Electric monorail system with magnetic levitations and linear induction motors for contactless delivery applications,” in Proc. IEEE 8th ICPE & ECCE, 2011, Jeju, pp. 2462-2465.
[56] J.-Y. Lee, H.-Y. Shen, and K.-C. Chan, “Design and implementation of removable and closed-shape dual ring pickup for contactless linear inductive power track system,” IEEE Trans. Ind. Appl., 2014, to be published.
[57] J.-Y. Lee, H.-Y. Shen, and K.-W. Lee, “Design and implementation of weaving-type pad for contactless EV inductive charging system,” IET Power Electron., 2014, to be published.
[58] J.-Y. Lee, H.-Y. Shen, and S.-T. Liu, “Aligned three-phase inductive coupled structure applied to contactless charging paddle system for electric vehicles,” in Proc. IEEE ISIE’13, 2013, Taiwan, pp. 1-6.
[59] L. Lewin, “Note on the inversion of the Schwarz-Christoffel conformal transfor-mation,” IEEE Trans. Microw. Theory Tech., vol. 19, no. 6, pp. 542-546, Jun. 1971.
[60] C. Liu, A. P. Hu, and N.-K. C. Nair, “Modelling and analysis of a capacitively coupled contactless power transfer system,” IET Power Electron., vol. 4, no. 7, pp. 808-815, Aug. 2011.
[61] C. Liu, A. P. Hu, N.-K. C. Nair, and B. Wang, “A capacitively coupled contactless matrix charging platform with soft switched transformer control,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 249-260, Jan. 2013.
[62] X. Liu and S. Y. R. Hui, “Optimal design of a hybrid winding structure for planar contactless battery charging platform,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 455-463, Jan. 2008.
[63] Z. N. Low, R. A. Chinga, R. Tseng, and J. S. Lin, “Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1801-1812, May 2009.
[64] M. Lukic, S. Rondineau, Z. Popovic, and D. S. Filipovic, “Modeling of realistic rectangular μ-coaxial lines,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2068-2076, May 2006.
[65] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Model for a three-phase contactless power transfer system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2676-2687, Sep. 2011.
[66] R. M. Miskiewicz and A. J. Moradewicz, “Contactless power interface for plug-in electric vehicles in V2G systems,” Bull. Pol. Acad. Sci.-Tech. Sci., vol. 59, no. 4, pp. 561-568, Dec. 2011.
[67] H. Miura, S. Arai, Y. Kakubari, F. Sato, H. Matsuki, and T. Sato, “Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3578-3580, Oct. 2006.
[68] J. P. Montgomery and L. Lewin, “Note on an E-plane waveguide step with simultaneous change of media,” IEEE Trans. Microw. Theory Tech., vol. 20, no. 11, pp. 763-764, Nov. 1972.
[69] A. J. Moradewicz and M. P. Kazmierkowski, “Contactless energy transfer system with FPGA-controlled resonant converter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 945-951, Sep. 2010.
[70] J. Muhlethaler, J. W. Kolar, and A. Ecklebe, “A novel approach for 3D air gap reluctance calculations,” in Proc. IEEE 8th ICPE & ECCE Asia, 2011, Jeju, pp. 446-452.
[71] J. Murakami, F. Sato, T. Watanabe, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Consideration on cordless power station-contactless power transmission system,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5037-5039, Sep. 1996.
[72] K. Nakamura, S. Hisada, K. Arimatsu, T. Ohinata, K. Sakamoto, and O. Ichinokura, “Iron loss calculation in a three-phase-laminated-core variable inductor based on reluctance network analysis,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4781-4784, Oct. 2009.
[73] F. Nakao, Y. Matsuo, M. Kitaoka, and H. Sakamoto, “Ferrite core couplers for inductive chargers,” in Proc. Power Conv. Conf., 2002, Osaka, pp. 850-854.
[74] A. Okuno, L. Gamage, and M. Nakaoka, “Performance evaluations of high- frequency inverter-linked DC/DC converter with noncontact pickup coil,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 475-477, Apr. 2001.
[75] K. D. Papastergiou and D. E. Macpherson, “An airborne radar power supply with contactless transfer of energy-part I: rotating transformer,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2874-2884, Oct. 2007.
[76] D. A. G. Pedder, A. D. Brown, and J. A. Skinner, “A contactless electrical energy transmission system,” IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 23-30, Feb. 1999.
[77] K. V. T. Piipponen, R. Sepponen, and P. Eskelinen, “A biosignal instrumentation system using capacitive coupling for power and signal isolation,” IEEE Trans. Biomed. Eng., vol. 54, no. 10, pp. 1822-1828, Oct. 2007.
[78] S. Raabe and G. A. Covic, “Practical design considerations for contactless power transfer quadrature pick-ups,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 400-409, Jan. 2013.
[79] S. Raabe, G. A. Covic, J. T. Boys, C. Pennalligen, and P. Shekar, “Practical considerations in the design of multiphase pick-ups for contactless power transfer systems,” in Proc. IEEE IECON’09, 2009, pp. 753-758.
[80] S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems,” in Proc. IEEE ICIEA’07, 2007, Harbin, pp. 68-73.
[81] A. K. RamRakhyani, S. Mirabbasi, and C. Mu, “Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 1, pp. 48-63, Feb. 2011.
[82] SAE Electric Vehicle Inductive Coupling Recommended Practice, SAE J-1773, May 28, 2009.
[83] H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air-gap coupler for inductive charger [for electric vehicles],” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, Sep. 1999.
[84] A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544-554, Feb. 2011.
[85] I. Sasada, “Analysis of mid-range electric power transfer based on an equivalent circuit model,” J. Appl. Phys., vol. 111, no. 7, p. 07E733, Mar. 2012.
[86] F. Sato, H. Matsuki, S. Kikuchi, T. Seto, T. Satoh, H. Osada, and K. Seki, “A new meander type contactless power transmission system-active excitation with a characteristics of coil shape,” IEEE Trans. Magn., vol. 34, no. 4, pp. 2069-2071, 1998.
[87] F. Sato, J. Murakami, T. Suzuki, H. Matsuki, S. Kikuchi, K. Harakawa, H. Osada, and K. Seki, “Contactless energy transmission to mobile loads by CLPS-test driving of an EV with starter batteries,” IEEE Trans. Magn., vol. 33, no. 5, pp. 4203-4205, Sep. 1997.
[88] J. Schneider (2012, Jan.). SAE J2954 overview and path forward. U.S.A. [Online]. Available: http://www.sae.org/smartgrid/sae-j2954-status_1-2012.pdf.
[89] P. Sergeant and A. Van den Bossche, “Inductive coupler for contactless power transmission,” IET Electr. Power Appl., vol. 2, no. 1, pp. 1-7, Feb. 2008.
[90] R. Severns, E. Yeow, G. Woody, J. Hall, and J. Hayes, “An ultra-compact transformer for a 100 W to 120 kW inductive coupler for electric vehicle charging,” in Proc. IEEE APEC’96, 1996, San Jose, pp. 32-38.
[91] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Comparison of position-independent contactless energy transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2059-2067, Apr. 2013.
[92] M. Soljacic, A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, and P. Fisher, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83-86, Jan. 2007.
[93] B. Strassner and C. Kai, “Microwave power transmission: historical milestones and system components,” Proc. IEEE, vol. 101, no. 6, pp. 1379-1396, Jun. 2013.
[94] K. Sugimori, H. Sakamoto, and K. Harada, “A one-converter contactless charger for electric vehicles,” Electr. Eng. Jpn., vol. 132, no. 2, pp. 73-81, Nov. 2000.
[95] J. Thomson, Recent Researches in Electricity and Magnetism. Oxford, U.K.: Oxford Press, 1893, pp. 203-244.
[96] J. L. Villa, J. Sallan, A. Llombart, and J. F. Sanz Osorio, “Design of a high frequency inductively coupled power transfer system for electric vehicle battery charge,” Appl. Energy, vol. 86, no. 3, pp. 355-363, Mar. 2009.
[97] J. L. Villa, J. Sallan, J. F. Sanz Osorio, and A. Llombart, “High-misalignment tolerant compensation topology for ICPT systems,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 945-951, Feb. 2012.
[98] J. L. Villa, J. F. Sanz Osorio, A. Llombart, and J. Sallan, “Optimal design of ICPT systems applied to electric vehicle battery charge,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2140-2149, Jun. 2009.
[99] M. Walker, The Schwarz-Christoffel transformation and its applications- a simple exposition. New York: Dover Publications, 1964.
[100] C.-S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, Feb. 2004.
[101] C.-S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[102] H. H. Wu, A. Gilchrist, K. D. Sealy, and D. Bronson, “A high efficiency 5 kW inductive charger for EVs using dual side control,” IEEE Trans. Ind. Electron., vol. 8, no. 3, pp. 585-595, Aug. 2012.
[103] Y. Yang, D. Yan, and F. C. Lee, “A new coupled inductors design in 2-phase interleaving VRM,” in Proc. IEEE Int. Power Electron. Motion Control Conf., 2009, Wuhan, pp. 344-350.
[104] Q. X. Yang, X. Zhang, H. Y. Chen, Y. Li, L. Jin, and R. Yan, “Direct field-circuit coupled analysis and corresponding experiments of electromagnetic resonant coupling system,” IEEE Trans. Magn., vol. 48, no. 11, pp. 3961-3964, Nov. 2012.
[105] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[106] N. Yin, G. Z. Xu, Q. X. Yang, J. Zhao, X. W. Yang, J. Q. Jin, W. N. Fu, and M. G. Sun, “Analysis of wireless energy transmission for implantable device based on coupled magnetic resonance,” IEEE Trans. Magn., vol. 48, no. 2, pp. 723-726, 2012.
[107] J. Yungtaek and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, Jun. 2003.
[108] A. Zaheer, M. Budhia, D. Kacprzak, and G. A. Covic, “Magnetic design of a 300 W under-floor contactless power transfer system,” in Proc. IEEE IECON’11, 2011, Melbourne, pp. 1408-1413.
[109] W. Zhang, Q. Chen, S. C. Wong, C. K. Tse, and X. Ruan, “A novel transformer for contactless energy transmission systems,” in Proc. IEEE ECCE’09, 2009, Japan, pp. 3218-3224.
[110] W. X. Zhong, X. Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136-4144, Sep. 2011.