簡易檢索 / 詳目顯示

研究生: 余章傑
Yu, Chang-chieh
論文名稱: 提昇內藏式永磁同步發電機低速輸出功率之研究
Investigation of Low-Speed Output Power Improvement for an Interior Permanent-Magnet Synchronous Alternator
指導教授: 鄭銘揚
Cheng, Ming-yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 永磁式同步發電機整流器輸出功率
外文關鍵詞: output power, rectifier, permanent-magnet synchronous alternator
相關次數: 點閱:70下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了因應車用電子裝置的增加,現行的14V汽車供電系統將提昇輸出電壓準位到42V。傳統爪極式同步發電機具有控制簡單與低成本等優點,但因為定子繞組與場繞組上的功率損失,導致此型發電機效率較低。另外,傳統爪極式同步發電機三相電源轉換為直流電源的部分,因使用了無法控制的二極體整流器,這將使得於42V系統下,發電機於低速時會有無法提供輸出功率的問題。因此,如何改善引擎在怠速,亦即發電機於低速操作下的輸出功率,是近幾年來重要的研究議題。
    本論文主要探討一有別於上述之傳統汽車發電系統的新型架構,利用具有功率密度高、維修保養容易且效率高之內藏式永磁同步發電機與可控制的半橋式開關型整流器,藉由功率元件開關的控制,達到有效提升發電機低速操作下之輸出功率。本研究透過位置感測器回授轉子位置資訊決定切換的正確時序,經由微處理器送出不同策略的功率開關責任週期與開關時序的控制訊號,用以討論不同的切換模式對發電機低速輸出功率之效果。

    Due to the increased electrical power demands of today’s automobiles, the 14V automotive electrical systems currently used will be upgraded to 42V systems. Automotive electrical systems have long depended on the claw-pole synchronous alternator because of its low cost, simple structure, and controllability. However, the claw-pole synchronous alternator lacks efficiency due to power losses incurred during stator and field winding. In the claw pole synchronous alternator, the uncontrolled rectifier is used in such a way that the alternator does not generate power at low speeds and could not be used for a 42V system. Therefore, improving the output power of the alternator while the engine is idle (low speed) has been an issue of great concern in recent years.
    This thesis investigates a new structure of 42V electrical system which consists of a controllable semi-bridge rectifier and an interior permanent-magnet synchronous alternator which have the characteristics of high power density, low maintenance and high efficiency. The power switches are controlled to improve the output power of the alternator when operating at low speed. The switching signals are determined through the feedback commutation signals of the position sensors. Thus, the control unit executes different control strategies of switching signals for each power switch, by means of investigation of the alternator output power at low speed under different control strategies.

    中文摘要................I 英文摘要................II 誌謝....................IV 目錄....................V 表目錄..................VIII 圖目錄..................IX 第一章 緒論..............................................1 1.1 研究動機與目的..................................1 1.2 研究方法........................................5 1.3 章節概述........................................5 第二章 發電機之原理與同步發電機之比較....................7 2.1 發電機原理......................................7 2.2 直流電機於發電機模式之學理描述..................7 2.3 同步發電機之分析與比較..........................11 2.3.1 傳統車用爪極式發電機............................11 2.3.2 永磁同步發電機..................................13 2.3.3 討論與比較......................................14 第三章 交流-直流功率轉換器之分析與比較...................16 3.1 前言............................................16 3.2 三相全橋式二極體整流器分析...........................16 3.3 三相單開關昇壓型整流器分.............................19 3.4 三相全橋式開關型整流器分析...........................22 3.5 三相半橋式開關型整流器分析...........................23 第四章 同步發電機之輸出功率控制方法......................26 4.1 前言............................................26 4.2 傳統車用電源系統輸出功率控制方法................26 4.3 基於開關型整流器之輸出功率改善方法..............30 4.3.1 偵測三次諧波零交越點法..........................30 4.3.2 基於位置感測器之切換法..........................33 4.3.3 線電壓與輸出端電壓比較法........................37 4.3.4 單開關切換法....................................39 4.3.5 基於電流感測器之三開關切換法....................40 4.3.6 討論與比較......................................44 4.4 基於六個位置感測器之開關切換調變技術............45 第五章 實驗架構與實驗結果................................49 5.1 前言.................................................49 5.2 硬體電路........................................50 5.2.1 動力量測平台與內藏式永磁同步發電機..............50 5.2.2 功率元件、驅動電路與電子式負載.....................51 5.3 軟體程式架構....................................52 5.4 實驗結果........................................56 5.5 實驗結果討論....................................68 第六章 結論與建議及未來研究方向..........................69 6.1 結論............................................69 6.2 未來研究建議....................................69 參考文獻.................................................71 自述.....................................................76

    [1] 林百福,陳秀美譯, 汽車馬達技術, 全華科技圖書股份有限公司, 2005.
    [2] D. Perreault and V. Caliskan, “Automotive power generation and control,” IEEE Transaction on Power Electronics, vol. 19, no. 3, pp. 618 - 630, 2004.
    [3] http://prototype.infolytica.com/en/
    [4] 戴維志, 空調壓縮機調速驅動系統之設計與實現, 碩士論文, 國立成功大學電機工程學系, 2006.
    [5] http://www.moeaboe.gov.tw/laws/saveenergy/l_save_list.asp
    [6] 陳秋麟, 電機機械基本原理, 東華書局股份有限公司, 1995.
    [7] R. C. Becerra, M. Ehsani and T. M. Jahns, “Four-quadrant brushless ECM drive with integrated current regulation,” IEEE Transactions on Industry Applications, vol. 28, no. 4, pp. 833 - 841, 1992.
    [8] 蔡東璋, 無刷永磁電機功率控制在健身車之應用, 碩士論文, 國立成功大學機械工程學系, 2000.
    [9] 廖福奕譯, 小型馬達技術, 全華科技圖書股份有限公司, 2006.
    [10] A. R. Prasad, P. D. Ziogas and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Transaction on Power Electronics, vol. 6, no. 1, pp. 83 - 92, 1991.
    [11] H. S. Athab, S. M. Bashi, N. Mariun and S. B. M. Noor, “Harmonic reduction in a boost-star three-phase single switch power factor correction circuit operating in discontinuous conduction mode,” in Proceedings of Student Conference on Research and Development, 2003, pp. 218 - 223.
    [12] D. O. Neacsu, Y. Ziwen and V. Rajagopalan, “Optimal PWM control for single-switch three-phase AC-DC boost converter,” in Proceedings of IEEE Power Electronics Specialists Conference, vol. 1, 1996, pp. 727 - 732.
    [13] D. S. L. Simonetti, J. Sebastian and J. Uceda, “Single-switch three-phase power factor preregulator under variable switching frequency and discontinuous input current,” in Proceedings of IEEE Power Electronics Specialists Conference, 1993, pp. 657 - 662.
    [14] D. Tokushima, H. Ishikawa, D. Wang and H. Naitoh, “Soft switched three-phase single switch boost-type rectifier,” in Proceedings of IEEE Power Conversion Conference, vol. 2, 2002, pp. 492 - 497.
    [15] C. Z. Liaw, D. M. Whaley, W. L. Soong and N. Ertugrul, “Investigation of inverterless control of interior permanent-magnet alternators,” IEEE Transactions on Industry Applications, vol. 42, no. 2, pp. 536 - 544, 2006.
    [16] C. Z. Liaw, W. L. Soong and N. Ertugrul, “Closed-loop control and performance of an inverterless interior PM automotive alternator,” in Proceedings of IEEE International Conference on Power Electronics and Drives Systems, vol. 1, 2006, pp. 343 - 348.
    [17] D. M. Whaley, W. L. Soong and N. Ertugrul, “Investigation of switched-mode rectifier for control of small-scale wind turbines,” in Proceedings of IEEE International Conference on Industry Applications, vol. 4, 2005, pp. 2849 - 2856.
    [18] 顏誌賢, 永磁式同步發電機功率控制系統之研製, 碩士論文, 國立台灣科技大學電機工程學系, 1999.
    [19] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 641 - 660, 2004.
    [20] C. Cecati, A. D. Aquila, A. Lecci and M. Liserre, “Implementation issues of a Fuzzy-logic-based three-phase active rectifier employing only voltage sensors,” IEEE Transactions on Industrial Electronics, vol. 52, no. 2, pp. 378 - 385, 2005.
    [21] A. Kaletsanos, F. Xepapas, S. Xepapas and S. N. Manias, “Nonlinear control technique for three-phase boost AC/DC power converter,” in Proceedings of IEEE Power Electronics Specialists Conference, vol. 3, 2003, pp. 1080 - 1085.
    [22] 盧志華, 數位化新型三相交/直流轉換器開關控制策略之研究, 碩士論文, 國立台灣科技大學電機工程學系, 2000.
    [23] 曾兆利, 以數位信號處理器為基礎之永磁式同步發電機功率控制系統之研製, 碩士論文, 國立台灣科技大學電機工程學系, 2000。
    [24] C. H. Chen, M. Y. Cheng, “Design and implementation of a high-performance bidirectional DC/AC converter for advanced EVs/HEVs,” IEE Proceedings-Electric Power Applications, vol. 153, no. 1, pp. 140 - 148, 2006.
    [25] L. Feng, J. Miller and S. Zarei, “A control scheme to maximize output power of a synchronous alternator in a vehicle electrical power generation system,” in Proceedings of IEEE Industry Applications Conference, vol. 2, 1996, pp. 830 - 835.
    [26] P. Bajec, B. Pevec, D. Voncina, D. Miljavec and J. Nastran, “Extending the low-speed operation range of PM generator in automotive applications using novel AC-DC converter control,” IEEE Transactions on Industrial Electronics, vol. 52, no. 2, pp. 436 - 443, 2005.
    [27] M. Naidu and J. Walters, “A 4-kW 42-V induction-machine-based automotive power generation system with a diode bridge rectifier and a PWM inverter,” IEEE Transactions on Industry Applications, vol. 39, no. 5, pp. 1287 - 1293, 2003.
    [28] H. W. Lee, T. H. Kim and M. Ehsani, “Maximum power throughput in the multiphase brushless DC generator,” IEE Proceedings-Electric Power Applications, vol. 152, no. 3, pp. 501 - 508, 2005.
    [29] J. Kikuchi, M. D. Manjrekar and T. A. Lipo, “Performance improvement of half controlled three phase PWM boost rectifier,” in Proceedings of IEEE Power Electronics Specialists Conference, vol. 1, 1999, pp. 319 - 324.
    [30] J. Rivas, D. Perreault, and T. Keim, “Performance improvement of alternators with switched-mode rectifiers,” IEEE Transactions on Energy Conversion, vol. 19, no. 3, pp. 561 - 568, 2004.
    [31] C. Z. Liaw, W. L. Soong and N. Ertugrul, “Low-speed output power improvement of an interior PM automotive alternator,” in Proceedings of IEEE Industry Applications Conference, vol. 1, 2006, pp. 27 - 34.
    [32] Tom Denton, Automobile electrical and electronic systems, SAE International, 1995.
    [33] L. Feng, and J. M. Miller, “A vehicle electric power generation system with improved output power and efficiency,” IEEE Transactions on Industry Applications, vol. 35, no. 6, pp. 1341 - 1346, 1999.
    [34] J. C. Moreira, “Indirect sensing for rotor flux position of permanent magnet AC motors operating over a wide speed range,” IEEE Transactions on Industry Applications, vol. 32, no. 6, pp. 1394 - 1401, 1996.
    [35] Microchip, dsPIC30F Family Reference Manual, Microchip Technology Inc., 2003.
    [36] C. H. Chen and M. Y. Cheng “A new cost effective sensorless commutation method for brushless DC motors without phase shift circuit and neutral voltage,” IEEE Transactions Power Electronics, vol. 22, no. 2, pp. 1394 - 1401, 2007.

    下載圖示 校內:2012-08-13公開
    校外:2012-08-13公開
    QR CODE