簡易檢索 / 詳目顯示

研究生: 陳龍億
Chen, Long-Yi
論文名稱: 變頻變壓器連接於電力系統之功率潮流控制與穩定度分析
Power Flow Control and Stability Analysis of a Variable Frequency Transformer Connected to Power Systems
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 216
中文關鍵詞: 功率潮流離岸式風場變頻變壓器穩定度
外文關鍵詞: power flow, stability, offshore wind farm, variable frequency transformer
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係以變頻變壓器連接於兩種電力系統之架構,分別為:兩電網間加入變頻變壓器、離岸式風場加入變頻變壓器並聯市電,利用此兩種架構研究系統之功率潮流、穩定度、穩態及動態響應。在三相平衡系統下採用交直軸等效電路模型,分別建立變頻變壓器以及離岸式風場之模型,並推導其數學模型來完成整體動態方程式。在穩態方面,則分別對不同控制參考值以及相關參數變動對系統特性之影響做詳細討論。在動態研究方面,完成系統於各種干擾或故障之情況下的模擬,並於兩個系統中分別設計不同之控制器來改善系統受干擾時之動態響應。

    This thesis presents power flow analysis, stability analysis, steady-state results, and dynamic performance of a variable frequency transformer (VFT) connected to power systems under two system configurations, i.e., a VFT connected between two power systems and an offshore wind farm connected to a power system through a VFT. The q-d axis equivalent-circuit model is employed to establish the models for the VFT and the offshore wind farm to derive the complete dynamic equations of the studied two configurations under three-phase balanced loading conditions. Steady-state characteristics of the studied systems under different control references and various parameters are examined. Dynamic simulations of the studied systems under various disturbance conditions are also carried out. Different controllers are also employed to improve the dynamic response of two systems under disturbance conditions.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 XII 符號說明 XVI 第一章 緒論 1 1-1 研究背景 1 1-2 變頻變壓器簡介 2 1-3 研究動機 5 1-4 相關文獻回顧 5 1-5 本論文之貢獻 11 1-6 研究內容概述 12 第二章 系統數學模型 14 2-1 前言 14 2-2 系統架構簡介 14 2-3 變頻變壓器之模型 16 2-3-1 繞線型轉子感應機之模型 17 2-3-2 補償電容器之模型 19 2-3-3 直流驅動馬達之模型 20 2-3-4 驅動馬達控制器之模型 22 2-4 離岸式風場之模型 23 2-4-1 風之模型 24 2-4-2 聚集等效風渦輪機之模型 26 2-4-3 旋角控制器之模型 29 2-4-4 雙饋式感應發電機之模型 30 第三章 兩電網間加入變頻變壓器之穩態分析 34 3-1 前言 34 3-2 功率參考值改變之穩態分析 34 3-3 變頻變壓器補償電容值改變之穩態分析 45 3-4 電網電壓改變之穩態分析 58 3-5 連接至電網傳輸線長度改變之穩態分析 71 3-6 連接至電網傳輸線X/R比值改變之穩態分析 83 第四章 兩電網間加入變頻變壓器之動態分析 95 4-1 前言 95 4-2 功率參考值變動之分析 95 4-2-1 功率參考值發生步階變動 95 4-2-2 功率參考值發生斜坡變動 100 4-3 變頻變壓器發生轉矩干擾之分析 104 4-4 變頻變壓器轉子側之補償電容器切換之分析 108 4-5 變頻變壓器轉子側電網發生電壓驟降之分析 112 4-6 變頻變壓器轉子側傳輸線發生跳線故障之分析 116 4-7 變頻變壓器定子側傳輸線不同長度下發生功率參考值斜 坡變動之分析 120 第五章 離岸式風場加入變頻變壓器並聯市電之控制器設計 124 5-1 前言 124 5-2 系統驅動馬達控制器之模型 124 5-3 利用極點安置法設計PID控制器 125 5-4 靈敏度分析 129 第六章 離岸式風場加入變頻變壓器並聯市電之穩態分析 133 6-1 前言 133 6-2 風速改變之穩態分析 133 6-3 風場匯流排上補償電容值改變之穩態分析 143 6-4 市電端電壓改變之穩態分析 151 6-5 連接至市電端之傳輸線長度改變之穩態分析 158 6-6 連接至市電端之傳輸線X/R比值改變之穩態分析 166 第七章 離岸式風場加入變頻變壓器並聯市電之動態分析 173 7-1 前言 173 7-2 風速變動之分析 173 7-2-1 擾動風之分析 173 7-2-2 斜坡風之分析 180 7-2-3 陣風之分析 186 7-3 風機發生轉矩干擾之分析 192 7-4 市電端發生三相短路故障之分析 197 第八章 結論與未來研究方向 203 8-1 結論 203 8-2 未來研究方向 207 參考文獻 209 附錄:系統使用參數 213 作者簡介 215

    [1] E. V. Larsen, “A classical approach to constructing a power flow controller,” in Proc. 1999 IEEE Power Engineering Society Summer Meeting, vol. 2, pp. 1192-1195, July 18-22, 1999, Edmonton, Alberta, Canada.
    [2] B. Bagen, D. Jacobson, G. Lane, and H. M. Turanli, “Evaluation of the performance of back-to-back HVDC converter and variable frequency transformer for power flow control in a weak interconnection,” in Proc. 2007 IEEE Power Engineering Society General Meeting, June 24-28, 2007, Tampa, Florida, USA.
    [3] GE Energy. Variable Frequency Transformer. [Online]. Available: http://www.gepower.com/prod_serv/products/transformers_vft/en/variable_frequency.htm, retrieve date: March 23, 2008.
    [4] R. J. Piwko, E. V. Larsen, and C. A. Wegner, “Variable frequency transformer - A new alternative for asynchronous power transfer,” in Proc. 2005 IEEE Power Engineering Society Inaugural Conference and Exposition in Africa, pp. 393-398, July 11-15, 2005, Durban, South Africa.
    [5] G. Chen and X. Zhou, “Digital simulation of variable frequency transformers for asynchronous interconnection in power system,” in Proc. IEEE PES 2005 Transmission and Distribution Conference and Exhibition: Asia and Pacific, August 14-18, 2005, Dalian, China.
    [6] A. Merkhouf, S. Uphadayay, and P. Doyon, “Variable frequency transformer electromagnetic design concept,” in Proc. 2007 IEEE Power Engineering Society General Meeting, June 24-28, 2007, Tampa, Florida, USA.
    [7] J. J. Marczewski, “VFT applications between grid control areas,” in Proc. 2007 IEEE Power Engineering Society General Meeting, June 24-28, 2007, Tampa, Florida, USA.
    [8] P. Truman and N. Stranges, “A direct current torque motor for application on a variable frequency transformer,” in Proc. 2007 IEEE Power Engineering Society General Meeting, June 24-28, 2007, Tampa, Florida, USA.
    [9] E. R. Pratico, C. Wegner, E. V. Larsen, R. J. Piwko, D. R. Wallace, and D. Kidd, “VFT operational overview - The Laredo project,” in Proc. 2007 IEEE Power Engineering Society General Meeting, June 24-28, 2007, Tampa, Florida, USA.
    [10] P. Marken, J. Roedel, D. Nadeau, D. Wallace, and H. Mongeau, “VFT maintenance and operating performance,” in Proc. 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, July 20-24, 2008, Pittsburgh, Pennsylvania, USA.
    [11] P. Hassink, P. E. Marken, R. O'Keefe, and G. R. Trevino, “Improving power system dynamic performance in Laredo, TX,” in Proc. 2008 T&D IEEE PES Transmission and Distribution Conference and Exposition, April 21-24, 2008, Chicago, Illinois, USA.
    [12] B. C. Raczkowski and P. W. Sauer, “Doubly-fed induction machine analysis for power flow control,” in Proc. 2005 Electrical Insulation Conference and Electrical Manufacturing Expo, pp. 454-459, October 24-26, 2005, Indianapolis, Indiana, USA.
    [13] P. E. Marken, J. J. Marczewski, R. D'Aquila, P. Hassink, J. H. Roedel, and R. L. Bodo, “VFT - A smart transmission technology that is compatible with the existing and future grid,” in Proc. 2009 IEEE Power Systems Conference and Exposition, March 15-18, 2009, Seattle, Washington, USA.
    [14] F. M. Hughes, O. Anaya-Lara, N. Jenkins, and G. Strbac, “Control of DFIG-based wind generation for power network support,” IEEE Trans. Power Systems, vol. 20, no. 4, pp. 1958-1966, November 2005.
    [15] F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission, and Distribution, vol. 1, no. 5, pp. 751-760, September 2007.
    [16] M. Kayıkçı and J. V. Milanović, “Reactive power control strategies for DFIG-based plants,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 389-396, June 2007.
    [17] J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind parks in power system,” in Proc. 2003 IEEE Bologna Power Tech conference, June 23-26, 2003, Bologna, Italy.
    [18] C. Chompoo-inwai, W.-J. Lee, P. Fuangfoo, M. Williams, and J. R. Liao, “System impact study for the interconnection of wind generation and utility system,” IEEE Trans. Industry Applications, vo1. 41, no. 1, pp. 163-168, February 2005.
    [19] P. Sørensen, N. A. Cutululis, A. Vigueras-Rodríguez, L. E. Jensen, J. Hjerrild, M. H. Donovan, and H. Madsen, “Power fluctuations from large wind farms,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 958-965, August 2007.
    [20] S.-S. Chen, L. Wang, W.-J. Lee, and Z. Chen, “Power flow control and damping enhancement of large wind farm using a superconducting magnetic energy storage unit,” IET Renewable Power Generation, vol. 3, no. 1, pp. 23-38, March 2009.
    [21] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
    [22] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
    [23] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994.
    [24] 劉書瑋,市電併聯型風力感應發電機之研究,國立成功大學電機工程學系碩士論文,2005年6月。
    [25] 林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分析,國立成功大學電機工程學系碩士論文,2006年6月。
    [26] 黃偉,虛功補償元件應用於風場之特性分析,國立成功大學電機工程學系碩士論文,2007年6月。
    [27] 劉建宏,海流發電系統之特性分析,國立成功大學電機工程學系碩士論文,2008年6月。
    [28] 鄭光哲,微渦輪機之特性分析,國立成功大學電機工程學系碩士論文,2008年6月。
    [29] 盧志榮,飛輪儲能系統於風力發電系統之功率潮流控制及穩定度分析研究,國立成功大學電機工程學系碩士論文,2008年6月。
    [30] 陳翔雄,利用超導儲能系統於大型離岸式風場之動態穩定度改善研究,國立成功大學電機工程學系博士論文,2009年3月。
    [31] 邱天基,電機機械,全華圖書股份有限公司,2007年11月。
    [32] GE Energy. Low Voltage Ride-thru Technology. [Online]. Available: http://www.gepower.com/businesses/ge_wind_energy/en/technology/lvrt.htm, retrieve date: July 15, 2009.
    [33] C. Abbey and G. Joos, “Effect of low voltage ride through (LVRT) characteristic on voltage stability,” in Proc. 2005 IEEE Power Engineering Society General Meeting, June 12-14, 2005, San Francisco, California, USA.

    下載圖示 校內:2012-08-17公開
    校外:2014-08-17公開
    QR CODE