簡易檢索 / 詳目顯示

研究生: 楊浩昕
Yang, Hao-Xin
論文名稱: 利用靜態同步補償器結合全釩氧化還原液流電池於多機電力系統連接混合再生能源系統之穩定度分析
Stability Analysis of a Multi-Machine Power System Connected with a Hybrid Renewable-energy System Using a STATCOM Integration with a Vanadium Redox Battery
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 129
中文關鍵詞: 風力發電系統波浪發電系統靜態同步補償器釩氧化還原液流電池阻尼控制器穩定度
外文關鍵詞: wind power-generation system, wave power-generation system, vanadium redox battery, STATCOM, power-oscillation damping controller, stability
相關次數: 點閱:129下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究一個含有混合風能與波浪能發電系統透過直流鏈以及換流器連接到十二匯流排之多機電力系統之系統穩定度,並提出靜態同步補償器結合釩氧化還原液流電池連接到併接點的策略,以抑制所研究系統之低頻振盪。在靜態同步補償器結合釩氧化還原液流電池之轉換器阻尼控制器設計方面,文中利用相位補償設計方法來設計超前-落後形式之功率振盪阻尼控制器,以達成穩定度改善的目標。本論文在穩態響應方面,分析了風速與波浪力在不同工作條件下,系統之運作特性與特徵值之變化;在時域模擬中,則完成了系統在不同運轉條件之動態及暫態模擬。由文中模擬結果顯示,所提出的靜態同步補償器結合釩氧化還原液流電池加入所設計之功率振盪阻尼控制器,可以有效抑制混合風能與波浪能發電系統透過直流鏈以及換流器連接到十二匯流排之多機電力系統之低頻系統振盪。

    This thesis presents the stability-analysis results of a twelve-bus multi-machine power system connected with a hybrid wind and wave power-generation system through a DC link and an inverter using a static synchronous compensator (STATCOM) integrated with a vanadium redox flow battery (VRB). The lead-lag type of power-oscillation damping controller (PODC) for the proposed STATCOM-VRB is designed by using phase-compensation design method to damp low-frequency oscillation of the studied system. The steady-state results under various operating conditions and the eigenvalues of the studied system under different operating conditions of wind speed and wave force are performed. The dynamic and transient simulation results of the studied system under different disturbance conditions are also carried out. It can be concluded from the simulation results that the proposed STATCOM-VRB joined with the designed PODC can effectively suppress low-frequency oscillation of the studied system under different operating conditions.

    目錄 摘要 I SUMMARY II 致謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XV 符號說明 XVIII 第一章 緒論 1 1-1 研究背景動機 1 1-2相關文獻回顧 3 1-3 本論文之貢獻 9 1-4 研究內容概要 9 第二章 研究系統架構與數學模型 11 2-1 前言 11 2-2 系統架構 12 2-3 波浪發電系統之數學模型 15 2-3-1 阿基米德波浪搖擺之數學模型 15 2-3-2 線性永磁發電機之數學模型 17 2-3-3 線性永磁式發電機之電壓源轉換器控制方塊圖 20 2-4風力發電系統之數學模型 21 2-4-1風渦輪機數學模型 22 2-4-2等效質量-彈簧-阻尼器系統數學模型 24 2-4-3 旋角控制器之數學模型 25 2-4-4 永磁式同步發電機之數學模型 26 2-4-5 永磁同步發電機之電壓源轉換器控制方塊圖 29 2-5 直流對交流電壓源換流器模型 30 2-5-1電壓源換流器數學模型 30 2-5-2 電壓源換流器控制方塊 31 2-6 釩氧化還原液流電池儲能系統之數學模型 32 2-6-1 釩氧化還原液流電池之數學模型 32 2-6-2 雙向直流對直流轉換器之數學模型 34 2-7 靜態同步補償器之數學模型 37 2-7-1 雙向直流對交流轉換器之數學模型 38 2-7-2 雙向直流對交流轉換器之控制方塊圖 39 2-8 多機系統模型 41 2-8-1 同步發電機模型 41 2-8-2 激磁系統模型 44 2-9渦輪機轉矩與調速機模型 45 2-9-1渦輪機轉矩模型 45 2-9-2調速機模型 47 2-10 負載與傳輸線網路模型 48 第三章 液流電池儲能系統之阻尼控制器設計 52 3-1 前言 52 3-2 功率振盪阻尼控制器回授訊號的選擇 53 3-3 直流對直流轉換器之控制系統模型 57 3-4 採用相位補償法設計超前-落後功率振盪阻尼控制器 58 3-5 靈敏度分析 63 第四章 穩態與小訊號穩定度分析 69 4-1 前言 69 4-2 特徵值求得方法 70 4-3 研究案例一:所研究系統加入靜態同步補償器結合全釩氧化還原液流電池 與功率振盪阻尼控制器前後之系統特徵值分析 72 4-4 研究案例二:所研究系統風場風速改變時之特徵值根軌跡 75 4-5 研究案例三:所研究系統風場風速固定為11 m/s、波浪能場波浪力峰值固定 為0.9 MN,波浪能發電系統動子移動速度uz變動等工作條件下之系統特徵值 變動根軌跡圖 81 4-6 研究案例四:所研究系統風場風速及波浪能場波浪力改變時之三維特性曲線 88 第五章 動態與暫態分析 93 5-1 前言 93 5-2 動態分析 95 5-2-1 同步發電機轉矩干擾 95 5-2-2 實際風速與固定波浪力下之動態分析 99 5-2 系統之暫態分析 107 5-2-1 波浪能場跳脫 107 5-2-2 三相短路故障 111 第六章 結論與未來研究方向 115 6-1 結論 115 6-2 未來研究方向 117 參考文獻 119 附錄:系統參數 126

    [1] 國際再生能源議題的發展概況。 [Online]. Available: https://portal.stpi.narl.org.tw/index/article/10479, retrieved date: Apr. 10, 2020.
    [2] 第三階段規則即將出爐,回顧從零開始的台灣離岸風電。[Online]. Available: https://technews.tw/2020/03/30/taiwan-offshore-wind, retrieved date: Apr. 10, 2020.
    [3] 液流電池技術與儲能應用。 [Online]. Available: https://www.materialsnet.com.tw/DocView.aspx?id=24862, retrieved date: Apr. 10, 2020.
    [4] 科技大觀園,波浪能發電。[Online]. Available: https://scitechvista.nat.gov.tw/c/sW0S.htm, retrieved date: Apr. 10, 2020.
    [5] N. G. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, Piscataway, NJ, USA: Wiley-IEEE press, 1999.
    [6] A. Arulampalam, M. Barnesand, N. Jenkins, and J. B. Ekanayake, “Power quality and stability improvement of a wind farm using STATCOM supported with hybrid battery energy storage,” IEE Proc.-Generation, Transmission and Distribution, vol. 153, no. 6, pp. 701-710, Nov. 2006.
    [7] H. Xie, L. Angquist, and H.-P. Nee, “Design study of a converter interface interconnecting energy storage with the DC link of a STATCOM,” IEEE Trans. Power Delivery, vol. 26, no. 4, pp. 2676-2686, Oct. 2011.
    [8] A. Kanchanaharuthai, V. Chankong, and K. A. Loparo, “Transient stability and voltage regulation in multimachine power systems vis-à-vis STATCOM and battery energy storage,” IEEE Trans. Power Systems, vol. 30, no. 5, pp. 2404-2416, Sep. 2015.
    [9] D. D. B.-Hall, G. A. Taylor, C. A. Smith, and M. R. Irving, “Flow batteries for enhancing wind power integration,” IEEE Trans. Power Systems, vol. 27, no. 3, pp. 1690-1697, Aug. 2012.
    [10] S. Yu, T. Fernando, T. K. Chau, and H. H.-C. Iu, “Voltage control strategies for solid oxide fuel cell energy system connected to complex power grids using dynamic state estimation and STATCOM,” IEEE Trans. Power Systems, vol. 32, no. 4, pp. 3136-3145, Jul. 2017.
    [11] L. J. Ontiveros, G. O. Suvire, and P. E. Mercado, “Power conditioning system coupled with a flow battery for wind energy applications: Modelling and control design,” IET Renewable Power Generation, vol. 11, no. 2, pp. 278-286, Jun. 2011.
    [12] R. K. Varma, S. A. Rahman, and T. Vanderheide, “New control of PV solar farm as STATCOM (PV-STATCOM) for increasing grid power transmission limits during night and day,” IEEE Trans. Power Systems, vol. 30, no. 2, pp. 755-763, Apr. 2015.
    [13] R. K. Varma and H. Maleki, “PV solar system control as STATCOM (PV-STATCOM) for power oscillation damping,” IEEE Trans. Sustainable Energy, vol. 10, no. 4, pp. 1793-1803, Oct. 2019.
    [14] L. Wang, C.-S. Lam, and M.-C. Wong, “A hybrid-STATCOM with wide compensation range and low DC-link voltage,” IEEE Trans. Industrial Electronics, vol. 63, no. 6, pp. 3333-3343, Jun 2016.
    [15] G. Farivar, C. Townsend, J. Pou, and B. Hredzak, “Low-capacitance StatCom with modular inductive filter,” IEEE Trans. Power Electronics, vol. 34, no. 4, pp. 3192-3203, Apr 2019.
    [16] M. Morati, D. Girod, F. Terrien, V. Peron, P. Poure, and S. Saadate, “Industrial 100-MVA EAF voltage flicker mitigation using VSC-based STATCOM with improved performance,” IEEE Trans. Power Delivery, vol. 31, no. 6, pp. 2494-2501, Dec. 2016.
    [17] S. M. Muyeen, “A combined approach of using an SDBR and a STATCOM to enhance the stability of a wind farm,” IEEE Systems Journal, vol. 9, no. 3, pp. 922-932, Sep. 2015.
    [18] B.-S. Chen and Y.-Y. Hsu, “A minimal harmonic controller for a STATCOM,” IEEE Trans. Industrial Electronics, vol. 55, no. 2, pp. 655-3664, Feb. 2008.
    [19] Y. Cheng, C. Qian, M. L. Crow, S. Pekarek, and S. Atcitty, “A comparison of diode-clamped and cascaded multilevel converters for a STATCOM with energy storage,” IEEE Trans. Industrial Electronics, vol. 53, no. 5, pp. 1512-1521, Oct. 2006.
    [20] T. K. Chau, S. S. Yu, T. Fernando, H. H.-C. Iu, and M. Small, “A load-forecasting-based adaptive parameter optimization strategy of STATCOM using ANNs for enhancement of LFOD in power systems,” IEEE Trans. Industrial Informatics, vol. 14, no. 6, pp. 2463-2472, Jun 2018.
    [21] K. Wang and M. L. Crow, “Power system voltage regulation via STATCOM internal nonlinear control,” IEEE Trans. Power Systems, vol. 26, no. 3, pp. 1252-1262, Aug. 2011.
    [22] D.-H. Choi, S. H. Lee, Y. C. Kang, and J.-W. Park, “Analysis on special protection scheme of Korea electric power system by fully utilizing STATCOM in a generation side,” IEEE Trans. Power Systems, vol. 32, no. 3, pp. 1882-1892, May. 2017.
    [23] H. Polinder, M. E. C. Damen, and F. Gardner, “Linear PM generator system for wave energy conversion in the AWS,” IEEE Trans. Energy Conversion, vol. 19, no. 3, pp. 583-589, Sep. 2004.
    [24] H. Polinder, M. E. C. Damen, and F. Gardner, “Design, modelling and test results of the AWS PM linear generator,” European Transactions on Electrical Power, vol. 15, no. 3, pp. 245-256, May/Jun. 2005.
    [25] F. Wu, P. Ju, X.-P. Zhang, C. Qin, G. J. Peng, H. Huang, and J. Fang, “Modeling, control strategy, and power conditioning for direct-drive wave energy conversion to operate with power grid,” Proceedings of the IEEE, vol. 101, no. 4, pp. 925-941, Apr. 2013.
    [26] F. Wu, X.-P. Zhang, P. Ju, and M. J. H. Sterling, “Optimal control for AWS-based wave energy conversion system,” IEEE Trans. Power Systems, vol. 24, no. 4, pp. 1747-1755, Sep. 2009.
    [27] C. E. Miller, A. van Zyl, and C. F. Landy, “Modelling a permanent magnet linear synchronous motor for control purposes,” in Proc. 2002 IEEE AFRICON Conference, George, South Africa, Oct. 2-4, 2002, pp. 671-674.
    [28] E. R. Laithwaite, Linear Electric Motors, London, UK: Mills &
    Boon, 1971.
    [29] M. I. Marei, M. Mokhtar, and A. A. El-Sattar, “MPPT strategy based on speed control for AWS-based wave energy conversion system,” Renewable Energy, vol. 83, pp. 305-317, Nov. 2015.
    [30] 林志昕,整合採用線性永磁發電機與採用感應發電機之波浪場之研究與分析,國立成功大學電機工程學系碩士論文,2010年7月。
    [31] 羅得銘,含整合風能與波浪發電系統之直流微電網穩定度分析與研究,國立成功大學電機工程學系碩士論文,2013年6月。
    [32] F. Wu, X.-P. Zhang, P. Ju, and M. J. H. Sterling, “Modeling and control of AWS-based wave energy conversion system integrated into power grid,” IEEE Trans. Power Systems, vol. 23, no. 3, pp. 1196-1204, Aug. 2008.
    [33] J. Conroy and R. Watson, “Aggregate modelling of wind farms containing full-converter wind turbine generators with permanent magnet synchronous machines: Transient stability studies,” IET Renewable Power Generation, vol. 3, no. 1, pp. 39-52, Mar. 2009.
    [34] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年6月。
    [35] S. Simani, “Overview of modelling and advanced control strategies for wind turbine systems,” Energies, vol. 8, pp. 13395-13418, Nov. 2015.
    [36] B. C. Pal and F. Mei, “Modelling adequacy of the doubly fed induction generator for small-signal stability studies in power systems,” IET Renewable Power Generation, vol. 2, no. 3, pp. 181-190, Sep. 2008.
    [37] J. Yan, H. Lin, Y. Feng, X. Guo, Y. Huang, and Z. Q. Zhu, “Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system,” IET Renewable Power Generation, vol. 7, no. 1, pp. 28-35, Feb. 2013.
    [38] M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. Industry Applications, vol. 46, no. 1, pp. 331-339, Jan./Feb. 2010.
    [39] M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. Industry Applications, vol. 46, no. 1, pp. 331-339, Jan./Feb. 2010.
    [40] X. Qiu, T. A. Nguyen, J. D. Guggenberger, M. L. Crow, and A. C. Elmore, “A field validated model of a vanadium redox flow battery for microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp.1592-1601, Jun. 2014.
    [41] X. Qiu, M. L. Crow, and A. C. Elmore, “A balance-of-plant vanadium redox battery system model,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 557-564, Feb. 2015.
    [42] J. A. Chahwan, C. Abbey, and G. Joos, “VRB modelling for the study of output terminal voltages, internal losses and performance,” in Proc. 2007 IEEE Canada Electrical Power Conference, Montreal, Quebec, Canada, Oct. 25-26, 2007, pp. 387-392.
    [43] J. A. Chahwan, “Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications,” M.S. Thesis, McGill University, Montreal, Quebec, Canada, 2007. Accessed on: Mar., 20, 2019.
    [44] A. S. Samosir and A. H. M. Yatim, “Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3468-3473, Oct. 2010.
    [45] H.-L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011
    [46] D. Boroyevich, R. Burgos, I. Cvetkovic, and B. Wen, “Modeling and control of three-phase high-power high-frequency converters,” in Proc. 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padova, Italy, Jun. 25-28, 2018, pp. 1-133.
    [47] A. Adamczyk, M. Altin, O. Goksu, R. Teodorescu, and F. Iov, “Generic 12-bus test system for wind power integration studies,” in Proc. 2013 15th European Conf. Power Electronics and Applications, Lille, France, Sep. 2-6, 2013, pp. 1-6.
    [48] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
    [49] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control, New York: McGraw-Hill, 1994.
    [50] I. Kamwa, R. Grondin, and Y. Hebert, “Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach,” IEEE Trans. Power Systems, vol. 16, no. 1, pp. 136-153, Feb. 2001.
    [51] A. M. A. Hamdan, “Geometric measures of modal controllability and observability of power system models,” Electric Power Systems Research, vol. 15, no. 2, pp. 147-155, Oct. 1988.
    [52] IEEE, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Standard 421.5-2005, Dec. 2005.
    [53] 中央氣象局。[Online]. Available: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp, retrieved date: Jun. 4, 2019.
    [54] M. E. Aboul-Ela, A. A. Sallam, J. D. Mccalley, and A. A. Fouad, “Damping controller design for power system oscillations using global signals,” IEEE Trans. Power Systems, vol. 11, no. 2, pp. 767-773, May 1996.

    無法下載圖示 校內:2025-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE