| 研究生: |
郭珏攸 Kuo, Chueh-Yu |
|---|---|
| 論文名稱: |
利用CMOS製程設計應用於毫米波之慢波結構縮小化被動元件 On-Chip Compact Passive Devices with Slow-Wave Structure in CMOS Process for Millimeter-Wave Applications |
| 指導教授: |
羅錦興
Luo, Ching-Hsing |
| 共同指導教授: |
李致毅
Lee, Jri |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | CMOS 、分支線耦合器 、威爾金森功率分配器/合成器 、慢波 |
| 外文關鍵詞: | CMOS, Branch-line coupler, Wilkinson Power Divider/Combiner, Slow-wave |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一系列利用慢波結構實現於CMOS製程的縮小化微波被動元件,主要分為兩個部分,第一個部分是利用CMOS 90 nm digital process 製程一個具有90°相位差的分支線耦合器,結合慢波結構以及共平面波導的方式,達到縮小晶片面積的效果;第二部分則是利用CMOS 90 nm RF process製作而成的威爾金森功率分配器/合成器,此研究的波導方式採用elevated-center 共平面波導的方式來設計,此波導方式可以很容易達到所要的阻抗值且方便平衡兩側接地面的電位進而減少高階模態的產生,最後再將慢波結構加入信號線中,以及製程廠所提供的電阻模型,完成此設計。
90°相位差的分支線耦合器利用一些位於信號線下方的慢波結構,提高介電常數,進而可以使波所行走的長度變短面積縮小,減少晶片成本,此設計的量測結果在60 GHz時的插入損耗為2.8 dB,隔離度為25dB,四個埠之反射損耗大於10 dB的頻寬範圍低頻從46 GHz起,高頻則可超過67 GHz,振幅不平衡60 GHz時0.8 dB,相位不平衡60 GHz 時90.3°,晶片面積不含pad為290 μm× 285 μm,與傳統的架構面積比起來可減少約75 %。
威爾金森功率分配器/合成器利用在信號線上加入慢波結構,並將其原本兩側的接地面下降一層金屬,此效果可以在傳輸線轉折處直接拉金屬線將兩側的接地面電位保持平衡,而減少高階模態的產生,也減少via的使用,另外也可輕易的達到高阻值的傳輸線,而慢波的結構,也是可以縮小面積減少波所走的長度,減少成本開銷。此設計量測結果的插入損耗在60 GHz時為2.4dB,兩輸出埠的隔離度在77 GHz時為13.7 dB,反射損耗為14.2 dB,振幅不平衡在60 GHz時為0.068 dB,相位不平衡60 GHz 時0.453°,晶片面積不含pad為250 μm × 350 μm.,與傳統的架構面積比起來可減少約80 %。
The thesis proposed two parts of compact passive devices in CMOS process for millimeter-wave applications. The first part is a 90° branch-line coupler with slow-wave structures and coplanar waveguide (CPW) in CMOS 90 nm digital process. The occupied area can be decreased because of the method. The other one is Wilkinson Power Divider / Combiner with slow-wave structures and elevated-center coplanar waveguide (EC-CPW) in CMOS 90 nm RF process. EC-CPW can be achieved the impedance value what we want easily and suppress the high order mode. Then combine the slow-wave signal line and the resistor model from foundry to complete the design.
The slow-wave structures of the 90° branch-line coupler that is located beneath the signal line can increase the effective dielectric constant so that the effective wavelength and the area can be decreased. The measured result of insertion loss (IL) is 2.8 dB at 60 GHz. The measured isolation is 25 dB. The return losses (RL) of four ports are over 10 dB from 46 GHz to at least 67 GHz. The amplitude imbalance is 0.8 dB at 60 GHz. The phase difference is 90.3° at 60 GHz. The occupied are without pads is 290 μm× 285 μm and lower about 75 % than a conventional one’s.
The novel Wilkinson Power Divider / Combiner mainly utilizes an elevated-center slow-wave signal line to complete it. The lower ground metal layer besides the signal line can be connected directly without via and suppress the high mode at the meander locations. And the slow-wave signal line also decreased the area. The measured IL is 2.4 dB at 60 GHz. The measured isolation and RL of two output ports are 13.7 dB at 77 GHz and 14.2 dB, respectively. The amplitude imbalance and phase difference are 0.068 dB and 0.453° at 60 GHz separately. The chip area with pads is 250 μm × 350 μm and is smaller about 80 % than an area of conventional Wilkinson Power Divider / Combiner.
[1] 許順盛, "60-GHz CMOS射頻晶片嵌入式天線及915-MHz近身軟板印刷式天線的研究設計," in 電腦與通信工程研究所 vol. 碩士 台南: 國立成功大學, 2007.
[2] D. M. Pozar, Microwave and RF wireless systems. New York: John Wiley, 2001.
[3] T. S. D. Cheung and J. R. Long, "Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits," IEEE Journal of Solid-State Circuits, vol. 41, pp. 1183-1200, May 2006.
[4] T. Yao, M. Gordon, K. Yau, M. T. Yang, and S. P. Voinigescu, "60-GHz PA and LNA in 90-nm RF-CMOS," in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.
[5] K. Wu and R. Vahldieck, "Hybrid-Mode Analysis of Homogeneously and Inhomogeneously Doped Low-Loss Slow-Wave Coplanar Transmission-Lines," IEEE Transactions on Microwave Theory and Techniques, vol. 39, pp. 1348-1360, Aug 1991.
[6] T. LaRocca, S.-W. Tam, D. Huang, Q. Gu, E. Socher, W. Hant, and F. Chang, "Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable ICs," in IEEE MTT-S International Microwave Symposium Digest 2008 pp. 181-184.
[7] G. Wang, W. Woods, H. Ding, and E. Mina, "Novel on-chip high performance slow-wave structure using discontinuous microstrip lines and multi-layer ground for compact millimeter wave applications," in Eletronic componets and technology conference, 2009, pp. 1606-1611.
[8] G. Wang, W. Woods, H. Ding, and E. Mina, "Novel low-cost on-chip CPW slow-wave structure for compact RF components and mm-wave applications," in IEEE Electronic Components and Technology Conference, 2008, pp. 186-190.
[9] T. S. D. Cheung, J. R. Long, K. V. R. Volant, A. Chinthakindi, C. M. Schnabel, J. Florkey, and K. Stein, "On-chip interconnect for mm-wave applications using an all-copper technology and wavelength reduction," in IEEE Solid-State Circuits Conference. vol. 1, 2003, pp. 396 - 501
[10] S. C. Jung, R. Negra, and F. M. Ghannouchi, "Analysis of miniaturized 3 dB branch-line hybrid couplers using distributed MIM capacitors," Microwave and Optical Technology Letters, vol. 52, pp. 1553-1556, Jul 2010.
[11] K. W. Eccleston and S. H. M. Ong., "Compact planar microstripline branch-line and rat-race couplers," IEEE Transactions on Microwave Theory and Techniques, vol. 51, pp. 2119-2125, October 2003.
[12] J. Wang, B. Z. Wang, Y. X. Guo, L. C. Ong, and S. Xiao, "A compact slow-wave microstrip branch-line coupler with high performance," IEEE Microwave and Wireless Components Letters, vol. 17, pp. 501-503, July 2007.
[13] K.-O. Sun, S.-J. Ho, C.-C. Yen, and D. v. d. Weide, "A compact branch-line coupler using discontinuous microstrip lines," IEEE Microwave and Wireless Components Letters, vol. 15, pp. 519-520, 2005.
[14] S. M. A.A. Omar and M. G. Stubbs, "Design of a Ku-band coplanar waveguide 90° branchline coupler " in Antennas and Propagation Society International Symposium. vol. 3, 1994, pp. 2216-2219
[15] K. Hettak, G. A. Morin, and M. G. Stubbs, "A novel compact multi-layer MMIC CPW Branchline coupler using thin-film microstrip stub loading at 44 GHz," in IEEE MTT-S Digest. vol. 1, 2004, pp. 327-330.
[16] H. I. Cantu and V. F. Fusco, "Ultra compact 24 GHz MMIC quasi-lumped quadrature coupler," in IEEE Microwave Symposium Digest, 2006, pp. 1730-1732.
[17] I. Toroda, T. Hiraoka, and T. Tokumitsu, "Multilayer MMIC branch-line coupler and broad-side coupler," in IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1992, pp. 79-82.
[18] T. Hirota, A. Minakawa, and M. Muraguchi, "Reduced-size branch-line and rat-race hybrids for uniplanar MMIC's," IEEE Transactions on Microwave Theory and Techniques, vol. 38, pp. 270-275, March 1990.
[19] K. Hettak, C. J. Verver, M. G. Stubbs, and G. Morin, "New Types of Very Compact 90° ACPS Branchline Couplers using CPW Shunt Stubs," in European Microwave Conference, 2001.
[20] I. Haroun, J. Wight, C. Plett, A. Fathy, and D. C. Chang, "Experimental Analysis of a 60 GHz Compact EC-CPW Branch-Line Coupler for mm-Wave CMOS Radios," IEEE Microwave and Wireless Components Letters, vol. 20, pp. 211-213, Apr 2010.
[21] D. M. Pozar, Microwave engineering, 3rd ed. Hoboken, NJ: J. Wiley, 2005.
[22] W. K. W. Ali and S. H. Al-Charchafchi, "Using Equivalent Dielectric Constant to Simplify the Analysis of Patch Microstrip Antenna with Multi Layer Substrates," in IEEE Antennas and Propagation Society International Symposium. vol. 2, 1998, pp. 676-679.
[23] A. Y.-K. Chen, Y. Baeyens, Y.-K. Chen, and J. Lin, "A low-power linear SiGe BiCMOS low-noise amplifier for millimeter-wave active imaging," IEEE Microwave and Wireless Components Letters, vol. 20, pp. 103-105, February 2010.
[24] S. Pellerano, Y. Palaskas, and K. Soumyanath, "A 64 GHz LNA with 15.5 dB gain and 6.5 dB NF in 90 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 43, pp. 1542-1552, July 2008.
[25] D. Huang, W. Hant, N.-Y. Wang, T. W. Ku, Q. Gu, R. Wong, and M.-C. F. Chang, "A 60GHz CMOS VCO using on-chip resonator with embedded artificial dielectric for size,loss and noise reduction," in IEEE Solid-State Circuits Conference, 2006.
[26] Y.-S. Lin, C.-Y. Hsu, H.-R. Chuang, and C.-Y. Chen, "A miniature 26-/77-GHz dual-band branch-line coupler using standard 0.18-µm CMOS technology," in IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 2010, pp. 219-222.
[27] M. K. Chirala and B. A. Floyd, "Millimeter-wave lange and ring-hybrid couplers in a silicon technology for E-band applications," in IEEE MTT-S Digest, 2006, pp. 1547-1550.
[28] Y. Sun and A. P. Freundorfer, "Broadband folded Wilkinson Power Combiner/Splitter," IEEE Microwave and Wireless Components Letters, vol. 14, pp. 295-297, Jun 2004.
[29] H.-T. Kim, K. Liu, R. C. Frye, Y.-T. Lee, G. Kim, and B. Ahn, "Design of compact power devider using integrated passive device (IPD) Technology," in IEEE Electronic Components and Technology Conference, 2009.
[30] Y.-A. Lai, C.-M. Lin, J.-C. Chiu, C.-H. Lin, and Y.-H. Wang, "A compact Ka-band planar three-way power divider," IEEE Microwave and Wireless Components Letters, vol. 17, pp. 840-842, December 2007.
[31] F. Schnieder, R. Doerner, and W. Heinrich, "High-impedance coplanar waveguides with low attenuation," IEEE Microwave and Guided Wave Letters, vol. 6, pp. 117-119, Mar 1996.
[32] J. G. Kim and G. M. Rebeiz, "Miniature four-way and two-way 24 GHz Wilkinson Power Dividers in 0.13 mu m CMOS," IEEE Microwave and Wireless Components Letters, vol. 17, pp. 658-660, Sep. 2007.
校內:2016-07-15公開