| 研究生: |
李紹禔 Li, Shao-Ti |
|---|---|
| 論文名稱: |
免疫細胞與腫瘤細胞之接觸力學分析 Contact Force Analysis of Immune Cell and Tumor Cell |
| 指導教授: |
蘇芳慶
Su, Fong-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 黏著力量 、原子力顯微鏡探針 、雷射鑷 |
| 外文關鍵詞: | Atomic Force Microscopy probe, Adhesion force, Laser Tweezers |
| 相關次數: | 點閱:112 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Fas-L(Fas Ligand:APO-1/CD95) 是腫瘤壞死因子家族成員之一,Fas/Fas-L系統的調控不僅是單單存在於活化T細胞與自然殺手細胞間自體篩選機制,目前在數種腫瘤細胞中皆發現Fas-L的存在。腫瘤細胞表現Fas-L遭遇免疫細胞後,除了引導免疫細胞走向凋亡外,同時腫瘤細胞團塊中心也受到免疫細胞浸潤作用的影響,產生形態學變化,腫瘤發生消散與轉移。問題是,細胞對談究竟如何導致腫瘤結構的明顯差異。
本研究利用雷射鑷操作系統與細胞刮取機構,分期量測全程細胞間交互作用力的變化,使用細胞株為Ribozyme抑制Fas-L表現量的人類腦神經膠質瘤衍生細胞株U-118MG(R)與正常表現量U-118MG(V),以及免疫細胞Jurkat。目的在透過力學分析解釋免疫細胞與腫瘤細胞的接觸時,雙方物理性質所造成的變異作長期偵測,及企圖以細胞力學論證免疫細胞與腫瘤細胞接觸後影響彼此行為的原因。
結果顯示,Jurkat細胞之於腫瘤細胞U-118MG(V)間的貼附力量較與(R)間的貼附力量高,可能歸因於免疫細胞與U-118MG(V)Fas/Fas-L接合時的貼附效應,或其表面黏附性質蛋白表現異於U-118MG(R);以腫瘤細胞本身貼附性而言,U-118MG(R)的黏著性質較U-118MG(V)為強,得以解釋腫瘤形成後,遭遇免疫細胞時,其形態的維持與崩散的差別現象。此二株細胞個別經過施予Jurkat細胞共培養後,U-118MG(V)在共培養第12小時黏著力相較於同期單一培養的表現產生顯著性降低,可能由於Jurkat細胞的作用導致,但其機制仍須進一步調查。
Fas-L(Fas Ligand:APO-1/CD95) is a member of tumor necrosis family. The regulation system of Fas/Fas-L exits not only in activated T cells and NK cells. Fas-L is found to express on several kinds of tumor cells. The expression of Fas-L on tumor cell induces apoptosis of immune cell, and the dispersion and migration of tumor cellular mass center occurs when tumor cells are affected by infiltration of immune cells. The mechanism of contact communication between tumor and immune cell leading to obvious difference of tumor structural change is unknown.
This study takes advantage of laser tweezers and cyto-detachment mechanism to measure the interaction force of tumor and immune cells with designed time lag. The research is executed with human glioma cell line and leukemia cell line -Jurkat cell. U-118MG(R) of low Fas-L expression suppressed by ribozyme and U-118MG(V) of normal Fas-L expression are tested. This study aims at investigation of the contact force variation between immune cell and tumor cell through mechanical analysis and elucidates the factors of contact influence of immune cell and glioma cell in cell mechanics.
The result shows that adhesion level between Jurkat and U-118MG(V) is a little higher than that between Jurkat and U118MG(R). It is likely caused by binding force of Fas/Fas-L activation or adhesiveness change. As for the adhesion of glioma, the adhesiveness of U-118MG(R) is higher than that of U-118MG(V). It may be responsible for the scattering of U-118MG(V) and the concentration mass of U-118MG(R) observed in nude mice. After 12 hours co-cultured with Jurkat, the adhesion property of U-118MG(V) is reduced obviously. It could be the effect of Jurkat contact, but further research is required.
[1] K. Bhadriraju and L. K. Hansen, Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness, Exp Cell Res, 278 (2002), pp. 92-100.
[2] A. Saterbak and D. A. Lauffenburger, Adhesion mediated by bonds in series, Biotechnol Prog, 12 (1996), pp. 682-99.
[3] B. Wehrle-Haller and B. A. Imhof, Actin, microtubules and focal adhesion dynamics during cell migration, Int J Biochem Cell Biol, 35 (2003), pp. 39-50.
[4] J. Conia, B. S. Edwards and S. Voelkel, The micro-robotic laboratory: optical trapping and scissing for the biologist, J Clin Lab Anal, 11 (1997), pp. 28-38.
[5] A. Ashkin, Optical trapping and manipulation of neutral particles using lasers, Proc Natl Acad Sci U S A, 94 (1997), pp. 4853-60.
[6] A. Ashkin, The study of cells by optical trapping and manipulation of living cells using infrared laser beams, ASGSB Bull, 4 (1991), pp. 133-46.
[7] Karl Otto Greulich, Micromanipulation by Light in Biology and Medicine, The Laser Microbeam and Optical Tweezers(1999)
[8] O. Thoumine, O. Cardoso and J. J. Meister, Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study, Eur Biophys J, 28 (1999), pp. 222-34..
[9] O. Thoumine, A. Ott, O. Cardoso and J. J. Meister, Microplates: a new tool for manipulation and mechanical perturbation of individual cells, J Biochem Biophys Methods, 39 (1999), pp. 47-62.
[10] K. Helmerson, R. Kishore, W. D. Phillips and H. H. Weetall, An optical tweezers-based immunosensor for detection of femtomoles-per-liter concentrations of antigens, Appl Biochem Biotechnol, 96 (2001), pp. 205-13.
[11] S. Seeger, S. Monajembashi, K. J. Hutter, G. Futterman, J. Wolfrum and K. O. Greulich, Application of laser optical tweezers in immunology and molecular genetics, Cytometry, 12 (1991), pp. 497-504.
[12] P. A. Negulescu, T. B. Krasieva, A. Khan, H. H. Kerschbaum and M. D. Cahalan, Polarity of T cell shape, motility, and sensitivity to antigen, Immunity, 4 (1996), pp. 421-30.
[13] G. von Wichert, B. Haimovich, G. S. Feng and M. P. Sheetz, Force-dependent integrin-cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2, Embo J, 22 (2003), pp. 5023-35.
[14] S. K. Chintala, Z. L. Gokaslan, Y. Go, R. Sawaya, G. L. Nicolson and J. S. Rao, Role of extracellular matrix proteins in regulation of human glioma cell invasion in vitro, Clin Exp Metastasis, 14 (1996), pp. 358-66.
[15] H. K. Haugland, B. B. Tysnes and O. B. Tysnes, Adhesion and migration of human glioma cells are differently dependent on extracellular matrix molecules, Anticancer Res, 17 (1997), pp. 1035-42.
[16] D. S. Tews, Adhesive and invasive features in gliomas, Pathol Res Pract, 196 (2000), pp. 701-11.
[17] J. H. Uhm, C. L. Gladson and J. S. Rao, The role of integrins in the malignant phenotype of gliomas, Front Biosci, 4 (1999), pp. D188-99.
[18] J. Doroszewski, Z. Golab-Meyer and W. Guryn, Adhesion of cells in flowing suspensions: effects of shearing force and cell kinetic energy, Microvasc Res, 18 (1979), pp. 421-33.
[19] G. Sagvolden, I. Giaever, E. O. Pettersen and J. Feder, Cell adhesion force microscopy, Proc Natl Acad Sci U S A, 96 (1999), pp. 471-6.
[20] 李真甄, 細胞黏著力的量測技術, A New Technique for Measurement of Cell Adhesion.(2003)
[21] M. W. Bennett, J. O'Connell, G. C. O'Sullivan, C. Brady, D. Roche, J. K. Collins and F. Shanahan, The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma, J Immunol, 160 (1998), pp. 5669-75.
[22] D. Cefai, R. Schwaninger, M. Balli, T. Brunner and C. D. Gimmi, Functional characterization of Fas ligand on tumor cells escaping active specific immunotherapy, Cell Death Differ, 8 (2001), pp. 687-95.
[23] A. Zeytun, M. Hassuneh, M. Nagarkatti and P. S. Nagarkatti, Fas-Fas ligand-based interactions between tumor cells and tumor-specific cytotoxic T lymphocytes: a lethal two-way street, Blood, 90 (1997), pp. 1952-9.
[24] Weaver, Robert F. 鍾楊聰, 張立雪, 林順富編譯. 分子生物學 1st (2003)
[25] D. Cefai, R. Schwaninger, M. Balli, T. Brunner and C. D. Gimmi, Functional characterization of Fas ligand on tumor cells escaping active specific immunotherapy, Cell Death Differ, 8 (2001), pp. 687-95.
[26] D. Chopin, R. Barei-Moniri, P. Maille, M. A. Le Frere-Belda, B. Muscatelli-Groux, N. Merendino, L. Lecerf, A. Stoppacciaro and F. Velotti, Human urinary bladder transitional cell carcinomas acquire the functional Fas ligand during tumor progression, Am J Pathol, 162 (2003), pp. 1139-49.
[27] J. O'Connell, M. W. Bennett, K. Nally, A. Houston, G. C. O'Sullivan and F. Shanahan, Altered mechanisms of apoptosis in colon cancer: Fas resistance and counterattack in the tumor-immune conflict, Ann N Y Acad Sci, 910 (2000), pp. 178-92; discussion 193-5.
[28] J. O'Connell, M. W. Bennett, G. C. O'Sullivan, J. O'Callaghan, J. K. Collins and F. Shanahan, Expression of Fas (CD95/APO-1) ligand by human breast cancers: significance for tumor immune privilege, Clin Diagn Lab Immunol, 6 (1999), pp. 457-63.
[29] B. C. Yang, Y. S. Wang, H. S. Liu and S. J. Lin, Ras signaling is involved in the expression of Fas-L in glioma, Lab Invest, 80 (2000), pp. 529-37.
[30] C. C. Chio, Y. S. Wang, Y. L. Chen, S. J. Lin and B. C. Yang, Down-regulation of Fas-L in glioma cells by ribozyme reduces cell apoptosis, tumour-infiltrating cells, and liver damage but accelerates tumour formation in nude mice, Br J Cancer, 85 (2001), pp. 1185-92.
[31] J. Kassis, D. A. Lauffenburger, T. Turner and A. Wells, Tumor invasion as dysregulated cell motility, Semin Cancer Biol, 11 (2001), pp. 105-17.
[32] N. Seki, A. D. Brooks, C. R. Carter, T. C. Back, E. M. Parsoneault, M. J. Smyth, R. H. Wiltrout and T. J. Sayers, Tumor-specific CTL kill murine renal cancer cells using both perforin and Fas ligand-mediated lysis in vitro, but cause tumor regression in vivo in the absence of perforin, J Immunol, 168 (2002), pp. 3484-92.
[33] S. Mori, A. Jewett, K. Murakami-Mori, M. Cavalcanti and B. Bonavida, The participation of the Fas-mediated cytotoxic pathway by natural killer cells is tumor-cell-dependent, Cancer Immunol Immunother, 44 (1997), pp. 282-90.
[34] N. Usman, L. Beigelman and J. A. McSwiggen, Hammerhead ribozyme engineering, Curr Opin Struct Biol, 6 (1996), pp. 527-33.