簡易檢索 / 詳目顯示

研究生: 潘晨安
Pan, Cheng-An
論文名稱: 智慧機器建築的動態表層研究
Kinetic Building Skin for Intelligent Robotic Architecture
指導教授: 鄭泰昇
Jeng, Tay-Sheng
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 180
中文關鍵詞: 動態建築可調適建築表層自主機器人智慧建築建築資訊模型
外文關鍵詞: Adaptive Building Skin, Autonomous Robot, Smart Material, Smart Space, Building Information Model
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   將機器物件導入空間中使建築物具備氣候適應性、使用多元性與構造可適性,是近年智慧建築的研究方向之一。本研究以機器建築為情境構想,設想一個空間智能體,由數百個小型可移動的機器單元群集而成,這些機器單元結合了感應器、致動器與智慧化科技,能藉由分散、聚集或變形來產生各種建築表層配置,進而創造出具有彈性及適應性的智慧空間。

      當建築空間中散佈著各種自動化裝置,「如何整合眾多自主運作的智能單體,成為一個協同運作的智能空間體」是機器建築主要的研究議題。本論文的研究目的,在於探討智慧機器建築的系統架構,探討層面包含:構造型態、機電整合與資訊整合。本研究透過文獻回顧、案例分析、議題研究與原型實作,來建立並測試機器建築的概念架構。本研究對以下四個領域進行文獻回顧,作為系統架構的理論基礎,包含:智慧建築系統、動態表層構造、群體智能系統與建築資訊模型理論。

      智慧機器建築的系統架構分為「實體裝置」與「資訊內容」二個面向,每個面向再依照空間尺度分為「空間場域」、「中介系統」與「單體物件」等三個層級。
    在「實體裝置」方面,機器建築的實踐,必須關注以下四種技術項目: (1)實體構造、(2)動力與能源轉換、(3)空間定位與遠端遙控與(4)行動控制與管理,本研究建構三個逐代演進的實體原型,以驗證實體構造及機電設備的整合架構並討論其應用潛力及限制。在「資訊平台」方面,機器建築的運作,必須考慮以下三種平台的同步性:(1)實體場域平台、(2)虛擬模型平台與(3)雲端資料平台,一個單體智能物件在這三個平台中,分別以實體模組、模型元件及雲端位址等形式呈現,當這三個平台的運作能同步共構,就能使空間場域及智能物件的資訊內容,能在跨平台與跨階段間發揮功能綜效。

      本研究的結論與貢獻如下:(1)本文所提出的機器建築的系統架構,可作為未來智慧建築空間的參照範式,尤其在構造型態、機電整合、資訊平台與新型應用等方面。(2)本研究為智慧機器表層所建構的混合式控制架構,以及個體單元的行為控制系統,這其中對於智能物件的自主行為之系統觀點與執行方法,如:行為決策機制、行為模塊的權限定義與功能分層、表層模組的平行運算與動態屬性,可作為未來分散式模組化建築表層與智能建築構材等相關研究的借鏡。(3)本研究認為智慧化環境的未來發展,應將智慧建築視為一個實體裝置與資訊內容之共構平台,如此能使許多分散自主的智能物件在群體協同運作下,成為統合一體的空間智能體,並提昇建築生命週期中的資訊交換性。(4)本研究在機器建築的實體原型建構階段中所獲得之空間設計、建築構造與機電系統的經驗可作為後續研究之參考。

     Integrating robotics into architectural space to promote spatial flexibility, climate adaptability and energy efficiency has become a compelling challenge in our changing world. With various physical and information units distributed in a spatial field, a major issue of smart space is "how intelligent individuals can collaboratively perform autonomous behaviors as a whole, spatial entity."

     Intelligent robotic architecture is a smart space that accommodates hundreds of swarm robotic units with well-integrated sensors, actuators, and smart technology, making collaborative operation possible in space. The system framework for intelligent robotic architecture consists of physical and information dimensions, and each dimension has three spatial hierarchical levels. In the physical dimension, the practical implications of robotic architecture are categorized into four technical sections: 1)physical conformation, 2)power and energy conversion, 3)spatial localization and remote control, and 4) the hybrid control system. In the information dimension, the operation of robotic architecture must consider the synchronicity of the following three platforms: 1)the physical building space, 2)the virtual building information modeling (BIM) model, and 3)the cloud environmental database. Operating these three platforms synchronously can generate comprehensive effects, and can integrate the information obtained from the spatial field and the intelligent units within it during building life-cycle phases starting from the interactive design, behavior simulation, installation and testing, to operation management. Three physical prototypes were evolutionarily progressed and applied to verify the feasibility of the conceptual framework.

     To conclusion, compared to a conventional fixed building envelope, distributed mobile surface units can actively respond to environmental conditions and move, scatter, or assemble themselves to generate various holistic configurations. By doing so, they promote the use of flexible architectural space, are adaptable to climate changes, and reduce energy consumption. This research serves to systematize the conceptual framework for intelligent robotic architecture with respect to physical conformation, mechatronics integration, and information platforms. It supports the future development of smart space, intelligent building materials, and intelligent BIM components.

      摘要 I 誌 謝 V 目 錄 VII 表目錄 XI 圖目錄 XII 第一章 緒論 1  1.1 研究背景 3   1.1.1 機器物件導入建築系 3   1.1.2 科技的發展趨勢 5   1.1.3 分散式的智能構材 6  1.2 研究目的 7  1.3 研究立場與範疇 8  1.4 研究架構 9 第二章 文獻回顧 11  2.1 動態建築表層 13   2.1.1 功能與目的 13   2.1.2 構造型態 14   2.1.3 系統架構 15  2.2 群體機器人系統 17   2.2.1 群體機器人的相關技術 18   2.2.2 群體智能運用於智慧空間 19 第三章 智慧機器建築的理論架構 21  3.1 智慧機器建築的系統特性 23   3.1.1 機器建築的表層型態 23   3.1.2 機器建築的運作情境 24   3.1.3 系統分析與需求 26  3.2 智慧機器建築的系統架構 28   3.2.1 系統架構的層級與類別 28   3.2.2 實體構造的整合 30   3.2.3 機電系統的整合 36   3.2.4 資訊平台的整合 41 第四章 機器建築的實體原型 43  4.1 原型實驗規劃 45   4.1.1 各代原型系統的演進 45  4.2 原型一:建築外殼之頂部表層 47   4.2.1 實驗概述 47   4.2.2 原型系統規劃 49   4.2.3 原型運作測試55  4.3 原型二:室內空間之互動展示牆 59   4.3.1 實驗概述 59   4.3.2 互動情境規劃 60   4.3.3 原型系統規劃 61   4.3.4 原型運作測試:互動展示場 65  4.4 原型三:建築立面之牆體開口 67   4.4.1 實驗概述 67   4.4.2 系統規劃 68 第五章 議題討論 75  5.1 機器建築的構造整合 77   5.1.1 中介框架的設計 77   5.1.2 構造系統的全案整合 78  5.2 機器建築的機電整合 80   5.2.1 動力系統 80   5.2.2 能源效益 80   5.2.3 電力問題 81   5.2.4 模組化電路整合 82   5.2.5 定位系統 82  5.3 智慧建築的控制架構 84   5.3.1 意外與錯誤類型 84   5.3.2 多重並行的防錯策略 85   5.3.3 修正的控制架構 86  5.4 分散式的空間機器人 87 第六章 結論 89 參考文獻 93 作者資訊 105 附錄 109  附錄一 用語定義與延伸研究議題 111   1.5 用語定義 112   1.6 延伸研究議題 113  附錄二 延伸文獻探討 115   2.1 智慧建築的發展 116   2.2 群體智能 125   2.3 建築資訊模型 129  附錄四 機器建築的機電整合 135   4.1 原型一:空間定位與驅動控制系統 136   4.2 原型二:表層單元機電設計與程式控制 138   4.3 原型三:表層單元主控電路板之電路設計 150  附錄五 機器建築的資訊整合 153   5.1 資訊平台的架構 154   5.2 物件層級 159   5.3 平台層級 164   5.4 資訊交換的實作測試 168  附錄六 現行BIM平台之技術調查 173   6.1 現行主要BIM平台的元件資料:Revit Family 174   6.2 現行主要BIM資訊平台的程式功能:Revit API 175  

    Aarts, E. (2004). Ambient intelligence: a multimedia perspective. MultiMedia, IEEE, 11(1), pp.12~19.

    Addington, M., & Schodek, D. L. (2004). Smart Materials and Technologies in Architecture. MA, USA: Architectural Press.

    Aksamija, A. (2013). Sustainable Facades: Design Methods for High-Performance Building Envelopes. Hoboken, NJ, USA: Wiley.

    Aldrich, F. K. (2003). Smart Homes: Past, Present and Future In R. Harper (Ed.), Inside the Smart Home (pp. 17-39). London, UK: Springer.

    Aram, S., Eastman, C., & Sacks, R. (2013). Requirements for BIM platforms in the concrete reinforcement supply chain. Automation in Construction, 35, 1-17.

    Arkin, R. C. (1998). Behavior-Based Robotics. Cambridge, MA, USA: MIT Press. (pp. 8-15, 20-27, 124-130, 205-214, 359-394)

    Autodesk. (2014). Revit API Developers Guide. Retrieved April 30, 2015, from http://help.autodesk.com/view/RVT/2015/ENU/?guid=GUID-F0A122E0-E556-4D0D-9D0F-7E72A9315A42

    Balch, T., & Parker, L. E. (Eds.). (2002). Robot Teams: From Diversity toPolymorphism (1 ed.). Natick, MA, USA: A K Peters / CRC Press.

    Becker, M. (2010). Measuring, controlling, regulating. In M. Schumacher, O. Schaeffer & M.-M. Vogt (Eds.), Move: Architecture in Motion - Dynamic Components and Elements (pp. 72-75). Berlin, DE: Birkhäuser Architecture.

    Beni, G. (2005). From swarm intelligence to swarm robotics. Swarm Robotics, 3342, 1-9.

    Berger+Parkkien_Architekten. (2002). The Embassies of the Nordic Countries. A+U : architecture and urbanism (September, 2002), pp.128-133.

    Bogue, R. (2008). Swarm intelligence and robotics. Industrial Robot: An International Journal, 35(6), 488 - 495.

    Booch, G., Maksimchuk, R. A., Engle, M. W., Young, B. J., Conallen, J., & Houston, K. A. (2009). Object-Oriented Analysis and Design with Applications. (H.-L. Tsai, Trans. 3 ed.). Taipei: Gotop Information Inc.

    Brooks, R. A. (1986). A Robust Layered Control System For Mobile Robots. IEEE Journal of Robotics and Automation, 2(1), 14-23.

    Brooks., R. A. (1999). Cambrian intelligence : the early history of the new AI. Cambridge, MA, USA: MIT Press. (pp. 59-75, 80-100)

    Butler, Z., & Rizzi, A. (2008). Distributed and Cellular Robots In B. Siciliano & O. Khatib (Eds.), Springer Handbook of Robotics (1 ed.). Berlin, Heidelberg, DE: Springer-Verlag.

    Cai, Z.-X. (2011). Synergy principles and technologies of multi-mobile robots. (Chinese ed.). Beijing: National Defense Industry Press. (pp. 2-10, 12-20, 27-39, 218, 242-246,)

    Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraula, G., & Bonabeau, E. (2003). Self-organization in Biological Systems. New York, USA: Princeton University Press.

    Cerovsek, T. (2011). A review and outlook for a Building Information Model (BIM)-A multi-standpoint framework for technological development. Advanced Engineering Informatics, 25(2).

    Chang, S. (2005). Smart Architectural Surfaces-Creating a Polymorphic Surface out of Aggregated Smart Digital Modules. In M.-L. Chiu (Ed.), Insights of Smart Environments (pp. 126-138). Taipei: Archidata.

    Chen, C.-W., Hsiao, S.-W., Yao, W.-S., Tsai, M.-C., & Chen, T.-C. (2007). Design of an Active Linear Guide by Piezoelectric Actuators. In Proceedings of The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON). Taipei, Taiwan.

    Chen, P.-W., Ou, K.-S., & Chen, K.-S. (2010). IR Indoor Localization and Wireless Transmission for Motion Control in Smart Building Applications based on Wiimote Technology. Proceedings of The 49th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE 2010). Taipei, Taiwan.

    Chen, S.-Y., & Chang, S.-F. (2013). Complexity and Contradiction in Intelligent Green Architecture -The S-House as an example. Computer-Aided Design and Applications, 9(1), 27-32.

    Chen, S.-Y., Chang, S.-F., & Chang, Y.-F. (2010). Exploring A Designer-oriented Computer Aided Design Interface for Smart Home Device Computer-Aided Design and Application, 7(6), 875~888.

    Chen, S.-Y., & Huang, J.-T. (2012). A Smart Green Building: An Environmental Health Control Design. Energies, 5(5), 1648-1663.

    Chen, T.-C., Ren, T.-J., Chen, P.-L., & Lou, Y.-W. (2010). Recurrent Fuzzy Neural Network Controller for Linear Ultrasonic Motor. Proceedings of The 49th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE 2010) Taipei, Taiwan.

    Chien, S.-F., & Wang, H.-J. (2014). Smart partition system – A room level support system for integrating smart technologies into existing buildings. Frontiers of Architectural Research, 3(4), 376-385.

    Chiu, M.-L. (Ed.). (2005). Insights of Smart Environments. Taipei: Archidata.

    Clements-Croome, D. (2012). Intelligent Buildings: An Introduction. London, UK: Routledge.

    Coates, P. (2010). Programming.Architecture. Abingdon, Oxon, UK ; New York, USA: Routledge.

    Cook, D., & Das, S. (Eds.). (2004). Smart Environments: Technology, Protocols and Applications. Hoboken, NJ, USA: Wiley-Interscience.

    Coste-Maniè, E., & Simmons. (2000). Architecture, the Backbone of Robotic Systems. Proceedings of Proceedings of the 2000 IEEE International Conference on Robotics & Automation. Francisco, California.

    dECOi_Architects. (2002). Hypo Surface Retrieved 30-4-2015, from http://hyposurface.org/

    Dino Rossi, Z. N., & Schlueter, A. (2012). Adaptive Distributed Robotics for Environmental Performance, Occupant Comfort and Architectural Expression. International Journal of Architectural Computing (IJAC), 10(3), 341-360

    Eastman, C. (1972). Adaptive-Conditional Architecture. Proceedings of Design Research Society's Conference Manchester. London, UK.

    Eastman, C. M. (2002). Building Product Models: Computer Environments, Supporting Design and Construction. USA: CRC Press. (pp. 35-74, 111-128, )

    Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers. (2 ed.). Hoboken, NJ, USA: Wiley.

    Edwards, W. K., & Grinter, R. E. (2001). At Home with Ubiquitous Computing: Seven Challenges. Ubicomp 2001: Ubiquitous Computing (Vol. 2201, pp. 256-272).

    Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence. Harlow, England, UK; Reading, MA, USA: Addison-Wesley Professional.

    Floreano, D., & Mattiussi, C. (2008). Bio-inspired artificial intelligence : theories, methods, and technologies. Cambridge, MA, USA: MIT Press.

    Fortmeyer, R., & Linn, C. (2014). Kinetic Architecture: Designs for Active Envelopes. Melbourne, Victoria, AU: Images Publishing Group.

    Fox, M., & Kemp, M. (2009). Interactive Architecture. New York, USA: Princeton Architectural Press.

    Frazer, J. (1995). An evolutionary architecture. London, UK: Architectural Association.

    Gates, B. (2007). A Robot in Every Home. Scientific American Magazine (January 2007), 58-65.

    Gross, M. D., & Green, K. E. (2012 ). Architectural robotics, inevitably. Interactions, 19(1), 28-33.

    Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006). Autonomous Self-assembly in Swarm-bots. IEEE Transactions on Robotics, 22(6), 1115-1130.

    Hallam, J. C. T., Malcolm, C. A., Brady, M., Hudson, R., & Partridge, D. (1994). Behaviour: Perception, Action and Intelligence: The View from Situated Robotics. Philosophical Transactions of the Royal Society of London A, 349(1689), 29-42.

    Harper, R., Rodden, T., Rogers, Y., & Sellen, A. (2008). Being Human: Human-Computer Interaction in the Year 2020. Cambridge, UK: Mrcrosoft Research Ltd.

    Hayes, B. (2008). Cloud Computing. Communications of the ACM, 51(5).

    Henderson, H. (2011). Modern Robotics: Building Versatile Machines. (Q. Guan, Trans. Chinese ed.). Shanghai: Shanghai Scientific and Technological Literature Press. (pp. 80-95, 129-135)

    Hensel, M., Menges, A., & Weinstock, M. (2010). Emergent Technologies and Design: Towards a Biological Paradigm for Architecture. London, UK: Routledge. (pp. 11~20, 25~81)

    Herzog+Partner. (2004). ZVK Administration Building in Wiesbaden. In T. Herzog, R. Krippner & W. Lang (Eds.), Facade Construction Manual (pp. 274-275). Berlin, DE: Birkhäuser Architecture

    Hinchey, M. G., Sterritt, R., & Rouff, C. (2007). Swarms and Swarm Intelligence. Computer, 40(4), 111-113.

    HobermanAssociates, & AdaptiveBuildingInitiative. (2010). Permea system in Aldar Central Market Retrieved 2015, April 30, from http://www.adaptivebuildings.com/aldar-central-market.html

    Igoe, T., & O'Sullivan, D. (2004). Physical Computing: Sensing and Controlling the Physical World with Computers. Boston, MA, USA: Thomson.

    Intille, S. S. (2006). The Goal: Smart People, Not Smart Homes. Proceedings of International Conference On Smart homes and health Telematics. Amsterdam, NL.

    Jabi, W. (2013). Parametric Design for Architecture. International Journal of Architectural Computing(IJAC), 11(4), 465-468.

    Jeng, T. (2009). Toward a Ubiquitous Smart Space Design Framework. Journal of Information Science and Engineering, 25(3), 675-686.

    Jeng, T. (2011). Interactive Architecture: Space is Medium, Interface, and Robot. Taipei: Garden City Publishing.

    Jones, J. (2003). Robot Programming: A Practical Guide to Behavior-Based Robotics. New York, USA: McGraw-Hill. (pp. 75-86, 233-235)

    Kidd, C. D., Orr, R., Abowd, G. D., Atkeson, C. G., Essa, I. A., MacIntyre, B., . . . Newstetter, W. (1999). The Aware Home: A Living Laboratory for Ubiquitous Computing Research. Proceedings of the Second International Workshop on Cooperative Buildings, Integrating Information, Organization, and Architecture (CoBuild'99). Pittsburgh, PA, USA.

    Klooster, T. (2009). Smart Surfaces and their Application in Architecture and Design. Berlin, DE: Birkhäuser.

    Kornienko, S., Kornienko, O., Nagarathinam, A., Levi, P. (2007). From real robot swarm to evolutionary multi-robot organism. 2007 IEEE Congress on Evolutionary Computation (CEC 2007).

    Kronenburg, R. (2007). Flexible: Architecture that Responds to Change. London, UK: Laurence King.

    Kroner, W. M. (1997). An intelligent and responsive architecture. Automation in Construction, 6(5), 381-393.

    Kuniavsky, M. (2010). Smart Things: Ubiquitous Computing User Experience Design. Amsterdam, NL ; Boston, MA, USA: Morgan Kaufmann Publisher/Elsevier.

    Larson, K., Intille, S. S., Mcleish, T. J., Beaudin, J. S., & Williams, R. E. (2004). Open Source Building — Reinventing Places of Living. BT Technology Journal 22(4), 187-200

    Leach, N., Carlson, A., Khoshnevis, B., & Thangavelu, M. (2012). Robotic Construction by Contour Crafting: The Case of Lunar Construction International. Journal of Architectural Computing (IJAC), 10(3), 423-438

    Lin, S.-H. E., & Gerber, D. J. (2014). Designing-in performance: A framework for evolutionary energy performance feedback in early stage design. Automation in Construction, 38, 59-73.

    Loonen, R. C. G. M., Trčka, M., Cóstola, D., & Hensen, J. L. M. (2013). Climate adaptive building shells: State-of-the-art and future challenges. Renewable and Sustainable Energy Reviews, 25, 483-493.

    Mataric, M., & Michaud, F. (2008). Behavior-Based Systems In B. Siciliano & O. Khatib (Eds.), Springer Handbook of Robotics (1 ed., pp. 891-908). Berlin, Heidelberg, DE: Springer-Verlag.

    Matarić, M. J. (2006). Situated Robotics. USA: Wiley Online Library.

    McCarter, R. (Ed.). (1987). Building Machines. Princeton, NJ, USA: Princeton Architectural Press.

    Minsky, M. L. (1986). The Society of Mind. NY, USA: Simon and Schuster, Inc. (pp. 16-37)

    Mitchell, W. J. (1999). e-topia. Cambridge, MA, USA: MIT Press.

    Moloney, J. (2011). Designing Kinetics for Architectural Facades: State Change. London, UK: Routledge.

    Mozer, M. C. (2004). Lessons from an Adaptive House. In D. Cook & S. Das (Eds.), Smart Environments: Technology, Protocols and Applications (pp. 273-310). Hoboken, NJ, USA: Wiley-Interscience.

    Narahara, T. (2010). Designing for Constant Change: An Adaptable Growth Model for Architecture. International Journal of Architectural Computing(IJAC), 8(1), 29-40.

    Negroponte, N. (1975). Soft Architecture Machines. Cambridge, MA, USA: MIT Press.

    Neidermeyer, E. (2008). Historical Aspects. In E. Neidermeyer & F. L. d. Silva (Eds.), Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (4 ed.). Philadelphia, USA: Lippincott Williams & Wilkins.

    Pan, C.-A., & Jeng, T. (2008). Exploring Sensing-based Kinetic Design for Responsive Architecture. Proceedings of Conference of Computer-Aided Architectural Design Research in Asia (CAADRIA). Chiang Mai, Thailand.

    Pan, C.-A., & Jeng, T. (2010). A Robotic and Kinetic Design for Interactive Architecture. Proceedings of The 49th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE 2010). Taipei, Taiwan.

    Pan, C.-A., & Jeng, T. (2011). Development of Interactive Wall Modules for Active, Responsive, and Robotic Architectural Space. Engineering Science & Technology Bulletin, 111.

    Pan, C.-A., & Jeng, T. (2012). Cellular Robotic Architecture. International Journal of Architectural Computing (IJAC), 10(3), 319-340.

    Pan, C.-A., & Jeng, T. (2014). A Study on Kinetic Building Skin for Intelligent Robotic Architecture. Journal of Architecture, 89, 35-55.

    Parker, L. E. (2008). Multiple Mobile Robot Systems In B. Siciliano & O. Khatib (Eds.), Springer Handbook of Robotics (1 ed., pp. 921-941). Berlin, Heidelberg, DE: Springer-Verlag

    Pask, G. (1969). Architectural Relevance of Cybernetics. Architectural Design, September, 494-496.

    Rabenck, A. (1969). Cybermation: A Useful Dream. Architectural Design, September 1969, 497-500.

    Roebuck, K. (2011). Affective Computing: High-impact Strategies: What You Need to Know: Definitions, Adoptions, Impact, Benefits, Maturity, Vendors. Brisbane, AU: Emereo Publishing. (pp. 68-80, 74 )

    Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable Self-assembly in A Thousand-robot Swarm. Science, 345(6198), 795-799.
    Ruiz-Geli, E. (2011). Media-ICT Building: Cloud 9. (1 ed.). Barcelona, ES: Actar.

    Russell, S., & Norvig, P. (2006). Artificial Intelligence: A Modern Approach. (2nd Chinese ed.). Taipei: Pearson Education, Inc. (pp. 1-15~29, 2-1~26, 25-8~16, 25-3~38, 27-1~5,)

    Sakamura, K. (2005). House of the Future - Tron House and PAPI. In M.-L. Chiu (Ed.), Insights of Smart Environments (pp. 203-202). Taipei: Archidata.

    Sanguinetti, P., Abdelmohsen, S., Lee, J., Lee, J., Sheward, H., & Eastman, C. (2012). General system architecture for BIM: An integrated approach for design and analysis. Advanced Engineering Informatics, 26(2), 317-333.

    Schumacher, M., Schaeffer, O., & Vogt, M.-M. (2010). Move: Architecture in Motion - Dynamic Components and Elements. Berlin, DE: Birkhäuser Architecture. (pp. 66-69, 72-75, 124-143, 152-155, )

    Sterk, T. (2005). Building Upon Negroponte: A Hybridized Model of Control Suitable for Responsible Architecture. Automation in Construction, 14(2), 225-232.

    Sterk, T. (2006). Responsive Architecture: User-Centered Interactions within the Hybridized Model of Control. Proceedings of GAME, SET, MATCH II. Technical University of Delft, Netherlands.

    Stine, D. J. (2013). Design Integration Using Autodesk Revit 2014. Mission,KS,USA: SDC Publications.

    Thün, G., & Kathy Velikov, M. O. M. a. L. S. (2012). The Agency of Responsive Envelopes: Interaction, Politics and Interconnected Systems International Journal of Architectural Computing (IJAC), 10(3), 377-400.

    Trianni, V., Nolfi, S., & Dorigo, M. (2011). Evolution, self-organisation and swarm robotics. (Long-fei, Trans.). In C. Blum & D. Merkle (Eds.), Swarm Intelligence: Introduction and Application (群智能) (Chinese ed., pp. 165-194). Beijing: National Defense Industry Press.

    Tsai, M.-C., Hsiao, S.-W., Yao, W.-S., & Chang, L.-K. (2010). Development of Mobile Robot for Intelligent Living Space. Proceedings of The 49th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE 2010). Taipei, Taiwan.

    Uchino, K. (1997). Piezoelectric Actuators and Ultrasonic Motors. MA, USA: Kluwer Academic Publishers.

    Velikov, K., & Thün, G. (2012). Responsive Building Envelopes: Characteristics and Evolving. In F. Trubiano (Ed.), Design and Construction of High-Performance Homes: Building Envelopes, Renewable Energies and Integrated Practice (pp. 75-91). London, UK: Routledge.

    Weber, R. H., & Weber, R. (2010). Internet of Things. Heidelberg, DE: Springer. (pp. 1-9,15~18,118~120)

    Weinstock, M. (2010). The Architecture of Emergence: The Evolution of Form in Nature and Civilisation. Chichester, West Sussex, UK: Wiley. (pp. 8~9, 11~41, 245~271)

    Weiser, M. (1993). Some Computer Science Issues in Ubiquitous Computing. Communications of the ACM - Special issue on computer augmented environments: back to the real world, 36(7), 75-84

    Weller, M. P., Gross, M. D., & Goldstein, S. C. (2011). Hyperform specification: designing and interacting with self-reconfiguring materials. Personal and Ubiquitous Computing, 15(2), 133-149.

    Weygant, R. S. (2011). BIM Content Development: Standards, Strategies, and Best Practices. Hoboken, NJ, USA: Wiley.

    Wiener, N. (1948). Cybernetics. Cambridge, MA, USA: MIT Press.

    Wigginton, M., & Harris, J. (2002). Intelligent Skins. Oxford, UK: Elsevier Architectural Press. (pp. 3-4, 29-33)

    Xu, D., & Zhu, W. (2008). Indoor mobile robot localization and control of services. (Chinese ed.). Beijing: Science Press. (pp. 7, 9-13, 179-185, 237-293, )

    Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., . . . Chirikjian, G. S. (2007). Modular Self-Reconfigurable Robot Systems. IEEE Robotics and Automation Magazine, 14(1), 43-52.

    Young, D., & Yu, T. (2004). Intelligent materials and system. Taipei: Wun Ching

    Zexian, Y. (1993). Modern Systems Theory. Hong Kong: Joint Publishing.

    姜付鵬. (2011). 電磁兼容的電路板設計:基于Altium Designer平台. 北京市: 機械工業出版社.

    徐楊, 王曉峰, & 何清漪. (2014). 物聯網環境下多智能體決策信息支持技術. 軟件學報, 25(10), pp. 2325-2345.

    陳上元, & 邱茂林. (2007). 以智慧代理者理論建立可調適環境之研究-智慧住宅外殼設計為例. 建築學報, 第61期(秋季號), 頁95~116.

    陳政雄, & 陳上元. (2012). 追求環境效率的智慧綠建築-蘭潭靜園. 台灣建築學會會刊雜誌, 第67期, 頁39~42.

    陳嘉懿, & 台灣建築中心智慧建築專案團隊. (2012). 智慧建築@臺灣. 台北市: 科技圖書出版社.

    楊克俊. (2006). 電磁兼容原理與設計技術. 北京市: 人民郵電出版社. (頁81, 116-122, 142-147)

    潘晨安, & 鄭泰昇. (2014). 智慧機器建築的動態表層研究. 建築學報, 第89期(秋季號), 頁35~55.

    蔡明祺. (2011). 模組化無線感測與致動器設計及其智慧化居住空間之應用-總計畫:模組化無線感測與致動器設計及其智慧化居住空間之應用. 國科會專題研究計畫期末報告. 台北市: 行政院國家科學委員會.

    鄭泰昇. (2008). 模組化智慧生活空間之實體原型方法研究. 國科會專題研究計畫期末報告. 台北市: 行政院國家科學委員會.

    鄭泰昇. (2011). 互動建築:空間即媒體、界面、與機器人. 田園城市文化出版.

    鄭泰昇. (2011). 模組化無線感測與致動器設計及其智慧化居住空間之應用-子計畫四:可主動回應之機器建築空間互動牆體研發設計. 國科會專題研究計畫期末報告. 台北市: 行行政院國家科學委員會.

    鄭泰昇. (2014). BIM導入台灣綠建築設計案例實作研究. 內政部建築研究所研究成果報告書. 台北市: 內政部建築研究所.

    鄭泰昇. (2015). BIM輔助參數化聯動的互動建築設計環境平台研究. 科技部專題研究計畫期中報告. 台北市: 行政院科技部.

    簡聖芬, & 王宏仁. (2013). 模組化聰慧內牆系統. 建築學報, 第86期(冬季號), 頁107~126.

    竇其仁, 林志敏, & 林正敏. (2010). 網路代理人 (Network Agents). 台北市: 易習圖書.

    機器建築表層之原型展示, http://www.youtube.com/CellularRoboticArchi/playlists

    無法下載圖示 校內:2030-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE