| 研究生: |
謝政穎 Hsieh, Cheng-Ying |
|---|---|
| 論文名稱: |
基於力感測器實現模糊阻抗控制系統並應用於居家服務型機器人之牽引與導航任務 Force Sensor based Fuzzy Impedance Control Design for Leading and Guiding Missions on Home Service Robot |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 力感測器 、模糊控制 、居家服務型機器人 、阻抗控制 |
| 外文關鍵詞: | Force Sensor, Fuzzy Control, Home Service Robot, Impedance Control |
| 相關次數: | 點閱:90 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
順應式控制是機器人與人互動之研究領域中,很重要的一項議題。加入順應性控制的設計,將提升互動時的安全性,並提供更多互動的可能性。本論文利用安裝在機器人手腕上的六軸力感測器,實現順應式阻抗控制系統。當機器人與人牽手行進時,機器人可以透過偵測互動者的施力,推算手臂末端點與底盤的移動距離,完成牽引與導航的任務。阻抗控制是實現順應式控制的一種方法,其主要將機器人的手臂末端模擬成一個質量點,並且賦予其物理特性,藉由讀取外界對於手臂末端的施力,推算出末端點應有的移動距離,使得手臂可以順著互動者的施力移動。為使末端的移動在互動時更加順暢,本論文加入模糊控制系統,調整阻抗控制中的三個參數,使手臂末端的模擬質量,可以根據當時的受力即時調整,並且透過估測受力大小與方向,控制機器人底盤移動的方向與速度。本論文中,機器人與人牽手行進包含兩個任務,人帶領機器人前進以及機器人導引人前進。在這兩個任務中,機器人皆透過阻抗系統得知互動者的施力狀況,規劃自身前進的方向與速度,以及手臂末端點移動的位置,能與互動者維持一定的距離。實際實驗結果顯示,所研製系統可針對不同的互動者,計算出合適的系統參數,成功地完成帶領與導航任務。
Impedance control is an important research topic in human-robot interaction be-cause it can increase the safety and the variety of interactions. The thesis realizes an impedance control system by mounting a 6-axis force sensor on the wrist of the home service robot. When the robot and a person are walking hand on hand, the robot detects the handing force from the person and generates a suitable pose of its end-effector and a moving path of its mobile platform to accomplish the leading and the guiding missions. The proposed impedance control system treats the end-effector of the robot arm as a point mass with physical property and detects the force from the environment to calcu-late the next pose which it should move to. Therefore, the arm can move following the force imposed by the person. For further improving the performance, we add a fuzzy controller to real-time adjust three parameters of the impedance control system and to plan the moving direction and velocity of the robot. In this thesis, we implement the impendence control system in leading and guiding missions. In the leading mission, the person leads the robot to go through a specific path. Whereas, the robot can guide a blind person by handing on her/his hand in the guiding mission. All the real experiments demonstrate the efficiency of the proposed system and the robot successfully accom-plishes these two missions.
[1] A. Calanca, R. Muradore, and P. Fiorini, “A review of algorithms for compliant con-trol of stiff and fixed-compliance robots,” IEEE/ASME Transactions on Mechatron-ics, vol. 21, no. 2, pp. 613-624, 2016.
[2] L. Villani and J. De Schutter, “Force control,” in Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Berlin, Germany: Springer, Chapter. 7, 2008.
[3] M. Pelletier, and M. Doyon, “On the implementation and performance of impedance control on position controlled robots,” in Proceedings of IEEE International Con-ference on Robotics and Automation, pp. 1228-1233, 1994.
[4] N. Hogan, “Impedance control: An approach to manipulation: Part II—Implementation,” Journal of Dynamic Systems, Measurement, and Control, vol. 107, no. 1, pp. 8-16, 1985.
[5] D. A. Lawrence. “Impedance control stability properties in common implementa-tions,” in Proceedings of IEEE International Conference on Robotics and Automa-tion, pp. 1185-1190, 1988.
[6] H. Koch, A. Konig, A. Weigl-Seitz, K. Kleinmann, and J. Suchy, “Multisensor con-tour following with vision, force, and acceleration sensors for an industrial robot,” IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 2, pp. 268-280, 2013.
[7] G. Field and Y. Stepanenko, “Model reference impedance control of robotic manipu-lators,” in Proceedings of IEEE Pacific Rim Conference on Communications Com-puters and Signal Processing, vol. 2, pp. 614-617, 1993 May.
[8] F. Lange, C. Jehle, M. Suppa, and G. Hirzinger, “Revised force control using a com-pliant sensor with a position controlled robot,” in Proceedings of IEEE International Conference on Robotics and Automation, pp.1532-1537, 2012, May.
[9] B. Kim, J. Park, S. Park, and S. Kang, “Impedance learning for robotic contact tasks using natural actor-critic algorithm,” IEEE Transactions on Systems, Man, and Cy-bernetics, Part b, vol. 40, no. 2, pp. 433-443, 2010.
[10] H. Sun, L. Zhang, X. Hu, and L. Tian, “Experiment study of fuzzy impedance con-trol on horizontal lower limbs rehabilitation robot,” in Proceedings of Internation-al Conference on Electronics, Communications and Control, pp. 2640-2643, 2011, September.
[11] C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schaeffer, and E. Burdet, “Human-like adaptation of force and impedance in stable and unstable interactions,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 918-930, 2011.
[12] P. W. Hsueh, J. C. Chen, W. S. Yao, M. C. Tsai, and W. C. Syu, “Luenberger observ-er-based impedance control of linear servo motor for a desired haptic system,” in Proceedings of CACS International Automatic Control Conference, pp. 140-145, 2013, December.
[13] H.M. Gross, H.J. Boehme, C. Schroeter, S. Mueller, A. Koenig, Ch. Martin, M. Merten, and A. Bley, “Shopbot: Progress in developing an interactive mobile shop-ping assistant for everyday use,” in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, pp. 3471-3478, 2008.
[14] Y. Morales, T. Kanda, and N. Hagita, “Walking together: side by side walking mod-el for an interacting robot,” Journal of Human-Robot Interaction, vol. 3, no. 2, pp. 51-73, 2014.
[15] J. G. Lee, M. S. Kim, T. M. Hwang, and S. J. Kang, “A mobile robot which can fol-low and lead human by detecting user location and behavior with wearable devices,” in Proceedings of IEEE International Conference on Consumer Electronics, pp. 209-210, 2016, January.
[16] Z. D. Wang, Y. Hirata, Y. Takano, and K. Kosuge, “From human to pushing leader robot: Leading a decentralized multirobot system for object handling,” in Pro-ceedings of IEEE International Conference on Robotics and Biomimetics, pp. 441-446, 2004, August.
[17] Y. H. Hsieh, Y. C. Huang, K. Y. Young, C. H. Ko, and S. K. Agrawal, “Motion guid-ance for a passive robot walking helper via user's applied hand forces,” IEEE Transactions on Human-Machine Systems, vol. 46, no. 6, pp. 869-881, 2016.
[18] Z. L. Huang, C. H. Jhuang, C. H. Ko, and K. Y. Young, “Development of intention detection and control system for robot walking helper,” in Proceedings of Interna-tional Conference on Advanced Robotics and Intelligent Systems, pp. 1, 2016, Au-gust.
[19] Y. H. Hsieh, C. H. Ko, and K. Y. Young, “Obstacle avoidance for passive robot walking helper based on receding horizon control,” in Proceedings of IEEE Inter-national Conference on Systems, Man, and Cybernetics, pp. 550-555, 2016, Octo-ber.
[20] C. H. Ko, K. Y. Young, Y. C. Huang, and S. K. Agrawal, “Active and passive control of walk-assist robot for outdoor guidance,” IEEE/ASME Transactions on Mecha-tronics, vol. 18, no. 3, pp. 1211-1220, 2013.
[21] Y. C. Huang, C. J. Wu, C. H. Ko, and K. Y. Young, “Collision-free guidance for pas-sive robot walking helper,” in Proceedings of 2012 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3129-3134, 2012, October.
[22] S. Azenkot, C. Feng, and M. Cakmak, “Enabling building service robots to guide blind people a participatory design approach,” in Proceedings of ACM/IEEE Inter-national Conference on Human-Robot Interaction, pp. 3-10, 2016, March.
[23] D. Y. Kim and K. Y. Yi, “A user-steered guide robot for the blind,” in Proceedings of IEEE International Conference on Robotics and Biomimetics, pp. 114-119, 2009, February.
[24] M. F. R. Lee, F. H. S. Chiu, and C. Zhuo, “Novel design of a social mobile robot for the blind disabilities,” in Proceedings of IEEE/SICE International Symposium on System Integration, pp. 161-166, 2013, December.
[25] S. F. Toha, H. M. Yusof, M. F. Razali, and A. H. A.Halim, “Intelligent path guidance robot for blind person assistance,” in Proceedings of International Conference on Informatics, Electronics and Vision, pp. 1-5, 2015, June.
[26] Kinect for Xbox One. [Online] Available: http://www.xbox.com/zh-TW/xbox-one/accessories/kinect-for-xbox-one#fbid=8XhiEgvbKDU.
[27] LMS1 SICK. [Online] Available: https://www.sick.com/tw/zf/product-portfolio/detection-and-ranging-solutions/2d/lms1xx/c/g91901.
[28] Force sensor WEF-6A200-4-RC5 [Online] Available: http://www.wacoh-tech.com/products/dynpick/200n.html.
[29] Robotis [Online] Available: http://en.robotis.com/index/.
[30] The denavit hartenberg convention [Online]. Aviable: https://notendur.hi.is/pgg/DenavitHartenberg.pdf.
[31] F. Korkmaz, A. Yılmaz, E. Akdoğan, M. E. Aktan, and M. Atlıhan, “Estimation of impedance control parameters with artificial neural networks for variable robotic resistive therapy,” in Proceedings of International Conference on Modeling, Simu-lation, and Applied Optimization, pp. 1-6, 2015, May.
[32] H. Lee, G. Lee, C. Kwon, N. Noguchi, and N. Y. Chong, “Switched observer based impedance control for an assistive robotic cart under unknown parameters,”, in Proceedings of IEEE International Symposium on Robot and Human Interactive Communication, pp. 101-106, 2012, September.
[33] K. T. Song, and C. H. Hsu, “A compliance control design for safe motion of a ro-botic manipulator,” in Proceedings of World Congress on Intelligent Control and Automation, pp. 920-925, 2011, June.
[34] S. Sun, N. An, X. Zhao, and M. Tan, “Human recognition for following robots with a Kinect sensor,” in Proceedings of IEEE International Conference on Robotics and Biomimetics, pp. 1331-1336, 2016, December.
[35] Y. Sun, L. Sun, and J. Liu, “Human comfort following behavior for service robots,” in Proceedings of IEEE International Conference on Robotics and Biomimetics, pp. 649-654, 2016, December.