簡易檢索 / 詳目顯示

研究生: 林泓志
Lin, Hong-Chih
論文名稱: 可同時光獵能及偵測之智慧型光處理器
Intelligent Light Processor for Simultaneously Light Energy Harvesting and Sensing
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 86
中文關鍵詞: 光能獵能器光感測器多輸入獵能器光處理器光電二極體光源控制
外文關鍵詞: light energy harvesting system, light sensing, multiple input energy harvester, light processor, photodiode, light control
相關次數: 點閱:134下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在傳統的建築物照明系統中,光的不均勻分佈會降低人類的光線體驗並浪費照明能量。使用光傳感器來感測環境光的信息和反饋來控制照明燈具是一種可行的解決方案。然而,光傳感器需要大量而廣泛的部署以控制整個建築物空間的照明裝置,為了傳感器系統的供電而會導致佈線和更換問題。本論文提出了一種智慧型光處理器,它結合光傳感器和光能獵能器組成能源自主傳感器系統。
    通過將多個光電二極體放置在不同位置和在透鏡輔助下增加可辨別性,每個光電二極體的輸出功率將是不同的並且與入射光相關。為了同時光能獵能和感測,智慧型光處理器使用多輸入直流-直流轉換器,每個輸入連接到光電二極體。當光電二極體達到其最大功率點時,直流-直流轉換器執行操作並由光電二極體向存儲元件供電。光電二極體的獵能週期與功率成正比。通過對每個光電二極體獵能週期計數和進行數據處理,可以獲得諸如光強度和角度的光資訊。
    本論文提出的智慧型光處理器有兩個積體電路實現,第一個採用台灣積體電路製造股份有限公司提供的 0.35μm 2P4M 3.3V混合信號互補式金氧半工藝製造,芯片面積為2.04mm2。它具有16個輸入,198nA控制器電流消耗及藉由微控制器輔助數據處理可實現高達±50º的光角度感測範圍。第二種採用台灣積體電路製造股份有限公司提供的0.18μm 1P6M 1.8V混合信號互補式金氧半工藝製造,芯片面積為1.52mm2。它具有9個輸入,55nA控制器電流消耗和進一步集成微控制器功能的單晶片。

    In traditional lighting system of buildings, non-uniform distribution of light degrades human light experience as well as wasting lighting energy. Using light sensors for sensing information of environment light and feedback to control lighting fixtures is a solution. However, light sensors need large amount and widely deployed to control lighting fixtures of whole buildings space, which can lead to wiring and replacement problem due to powering of sensor system. This thesis proposed an intelligent light processor (ILP) which integrated light sensor and light energy harvester to form the energy autonomous sensor system.
    By placing multiple photodiodes (PDs) on different position with lens assistance to increase discernibility, output power of each PD will be difference and correlated to the incident light. To simultaneously light energy harvest and light sense, the proposed ILP using multiple input DC-DC converter with each input connected to PDs. When PDs reach its maximum power point, the DC-DC converter performs operation and delivers power from PDs to storage element. The harvested period of PDs is proportional to PDs power. By counting each PD harvested period and data processing, the light information such as light intensity and angle can be obtained.
    The proposed ILP has two IC implementations, the first is fabricated in TSMC 0.35μm 2P4M 3.3V Mixed-Signal CMOS process with chip area of 2.04mm2. It features 16 inputs, 198nA controller current consumption and up to ±50º light angle detection range with microcontroller (MCU) assisted in data process. The second is fabricated in TSMC 0.18μm 1P6M 1.8V Mixed-Signal CMOS process with chip area of 1.52mm2. It features 9 inputs, 55nA controller current consumption and further integrated MCU function into single chip.

    摘要 I Abstract II Acknowledgment III Table of Contents IV List of Tables VI List of Figures VII Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Organization 5 Chapter 2. System Design 6 2.1 Photodiode Characteristic 6 2.2 Light Sensor and Energy Harvesting System 8 2.2.1 Light Sensor System 8 2.2.2 Light Energy Harvesting System 9 2.3 Photodiode Implementation and Measurement Results 11 2.3.1 Design and Measurement of 4.9mm2 Photodiode 12 2.3.2 Design and Measurement 8mm2 Photodiode 17 2.4 Measurement of Lens with Photodiodes 22 2.5 Intelligent Light Processor and Intelligent Lighting system 29 2.5.1 Intelligent Light Processor 29 2.5.2 Intelligent Lighting System 31 2.6 Radio Frequency Transmitter as Load of Intelligent Light Processor 33 Chapter 3. Circuit Implementations 36 3.1 16-Phase Intelligent Light Processor 41 3.1.1 Startup 41 3.1.2 Bias and Reference 42 3.1.3 16 Phase Clock Generator 43 3.1.4 16 Phase Fractional Open Circuit Voltage 43 3.1.5 Maximum Power Point Regulation 45 3.1.6 Load Regulation 46 3.1.7 Gate Driver and Power MOSFET 47 3.1.8 Parasitic Model for PAD, Bonding Wires and PCB Traces 49 3.1.9 Power Supply Modeling 52 3.2 Pre-Layout Verification of 16 Phase Intelligent Light Process 54 3.2.1 Startup 54 3.2.2 16-Phase Clock Generator 56 3.2.3 Load Regulation 56 3.2.4 MPP Regulation 57 3.2.5 Normal Operation with Supply Noise 58 3.3 9-Phase Intelligent Light Processor 59 3.3.1 Start-up 59 3.3.2 Bias and Reference 60 3.3.3 Clock Generator 61 3.3.4 9-Phase Fractional Open Circuit Voltage 62 3.3.5 MPP Regulation 63 3.3.6 Adaptive On Time Generator 64 3.3.7 Load Regulation 66 3.3.8 Light to Digital Converter 66 3.3.9 Power MOSFET Sizing 67 3.4 Pre-Layout Verification of 16 Phase Intelligent Light Process 68 3.4.1 Startup 68 3.4.2 Clock Generation and Load Regulation 68 3.4.3 MPP regulation and AOT 69 Chapter 4. Measurement Results 70 4.1 Layout Photograph of 16-Phase ILP 70 4.2 Post-Layout Verification of 16-phase ILP 71 4.3 Measurement Environment of 16-Phase ILP 75 4.4 Chip Micrograph and Measurement Results of 16-Phase ILP 77 4.4.1 Chip Micrograph 77 4.4.2 Measurement Results 78 4.5 Comparison Table of 16-phase ILP 80 4.6 Layout Photograph of 9-Phase ILP 81 Chapter 5. Conclusions and Future Works 82 5.1 Conclusions 82 5.2 Future Works 83 Chapter 6. References 84

    [1] C. Basu, J. J. Caubel, K. Kim, E. Cheng, A. Dhinakaran, A. M. Agogino, R. A. Martin, “Sensor-Based Predictive Modeling for Smart Lighting in Grid-Integrated Buildings,” IEEE Sensors J., vol. 14, no. 12, pp. 4216-4229, Dec. 2014.
    [2] S. Afshari and S. Mishra, “A plug-and-play realization of decentralized feedback control for smart lighting systems,” IEEE Trans. Control Syst. Technol., vol. 24, no. 4, pp. 1317-1327, Jul. 2016.
    [3] J. Mix, K. Cunningham, “Task/Vertical/Ambient Lighting,” Energy Efficiency Emerging Technologies, Sep. 2013.
    [4] GE Lighting, “The Evolving Workspace: Putting Light to Work in Office Design,” [Online]. Available: https://products.currentbyge.com/sites/products.currentbyge.com/files/documents/document_file/GE-The-Evolving-Workspace-Whitepaper.pdf.
    [5] Y.-J. Wen, D. DiBartolomeo, and F. Rubinstein, “Co-simulation based building controls implementation with networked sensors and actuators,” in Proc. 3rd ACM Workshop Embedded Sens. Syst. Energy-Efficiency Buildings, pp. 55-60, 2011.
    [6] K. Uchida and G. Teramichi, “New task and ambient lighting system with dual light distributions,” in 2015 IEEE Int. Conf. on Building Efficiency and Sustainable Technologies, pp. 1-4, 2015.
    [7] C.-T. Chiang and J.-Y. Liou, “Design of a CMOS intelligent light sensing chip for automatic brightness tuning applications,” IEEE Sensors J., vol. 13, no. 12, pp. 4955-4961, Dec. 2013.
    [8] H. Song, Z. Lu, T. Luo, J. B. Christen and H. Wang, “A CMOS Self-Powered Monolithic Light Direction Sensor with SAR ADC,” IEEE System-on-Chip Conference (SOCC), pp. 58-62, 2014.
    [9] A. Fish, S. Hamami, and O. Yadid-Pecht, “CMOS image sensors with self-powered generation capability,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1210–1214, Nov. 2006.
    [10] J. H. Ko, M. F. Amir, K. Z. Ahmed, T. Na and S. Mukhopadhyay, "A Single-Chip Image Sensor Node With Energy Harvesting From a CMOS Pixel Array," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2295-2307, Sep. 2017.
    [11] M. K. Law, A. Bermak, and C. Shi, “A Low-Power Energy-Harvesting Logarithmic CMOS Image Sensor With Reconfigurable Resolution Using Two-Level Quantization Scheme,” in IEEE Trans. Circuits Syst. II Express Briefs, vol. 58, no. 2, pp. 80–84, Feb. 2011.
    [12] A. Y.-C. Chiou and C.-C. Hsieh, “A 137 dB dynamic range and 0.32 V self-powered CMOS imager with energy harvesting pixels,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2769–2776, Nov. 2016.
    [13] H. T. Wang and W. D. L.-Salas, "An Image Sensor With Joint Sensing and Energy Harvesting Functions," IEEE Sensors Journal, vol. 15, no.2, pp. 902-916,Feb. 2015.
    [14] I. Cevik and S. U. Ay, “An ultra-low power energy harvesting and imaging (EHI) type CMOS APS imager with self-power capability,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 9, pp. 2177–2186, Sep. 2015.
    [15] OSIOptoelectronics, “Photodiode Characteristics and Applications,” [Online]. Available: http://www.osioptoelectronics.com/application-notes/an-photodiode-parameters-characteristics.pdf.
    [16] A. Nogier, G. Sicard, A. Peizerat, “A photovoltaic mode pixel Embedding energy harvesting capability For future self-powered image sensors,” IEEE International New Circuits and Systems Conference (NEWCAS), pp. 261-264, 2018.
    [17] S. K. Nayar, D. C. Sims, and M. Fridberg, "Towards Self-Powered Cameras," in IEEE International Conference on Computational Photography (ICCP), pp. 1-10, 2015.
    [18] K. Z. Ahmed, M. F. Amir, J. H. Ko and S. Mukhopadhyay, "Reconfigurable 96×128 active pixel sensor with 2.1µW/mm2 power generation and regulated multi-domain power delivery for self-powered imaging," European Solid-State Circuits Conference (ESSCIRC), pp. 507-510, 2016.
    [19] Analog Devices, “Infrared Light Angle Sensor ADPD2140,” [Online.] Available: https://www.analog.com/media/en/technical-documentation/data-sheets/ADPD2140.pdf.
    [20] W. Lim, D. Sylvester, D. Blaauw, “A sub-nW 80mlx-to-1.26Mlx self-referencing light-to-digital converter with AlGaAs photodiode,” in IEEE ISSCC Dig. Tech. Papers, pp. 72-73, 2017.
    [21] V. Varghese and S. S. Chen, “Polarization-based angle sensitive pixels for light field image sensors with high spatio-angular resolution,” IEEE Sensors J., vol. 16, no. 13, pp. 5183–5194, Jul. 2016.
    [22] F. Khan, A. Banerjee, M. Hasan, H. Kim, C.H. Mastrangelo, “Microfabricated single-lens Shack-Hartmann light angle sensor”, IEEE Sensors, pp. 1-3, 2017.
    [23] ISO 8995-1 / CIE S 008/E.
    [24] Y.-H. Wang, Y.-W. Huang, P.-C. Huang, H.-J. Chen, and T.-H. Kuo, “A single-inductor dual-path three-switch converter with energy-recycling technique for light energy harvesting,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2716-2728, Nov. 2016.
    [25] S. S. Amin, P. P. Mercier, “MISIMO: A multi-input single-inductor multi-output energy harvester employing event-driven MPPT control to achieve 89% peak efficiency and a 60,000x dynamic range in 28nm FDSOI,” in IEEE ISSCC Dig. Tech. Papers, pp. 144-145, 2018.

    下載圖示 校內:2024-09-02公開
    校外:2024-09-02公開
    QR CODE