| 研究生: |
林泓志 Lin, Hong-Chih |
|---|---|
| 論文名稱: |
可同時光獵能及偵測之智慧型光處理器 Intelligent Light Processor for Simultaneously Light Energy Harvesting and Sensing |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 光能獵能器 、光感測器 、多輸入獵能器 、光處理器 、光電二極體 、光源控制 |
| 外文關鍵詞: | light energy harvesting system, light sensing, multiple input energy harvester, light processor, photodiode, light control |
| 相關次數: | 點閱:134 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在傳統的建築物照明系統中,光的不均勻分佈會降低人類的光線體驗並浪費照明能量。使用光傳感器來感測環境光的信息和反饋來控制照明燈具是一種可行的解決方案。然而,光傳感器需要大量而廣泛的部署以控制整個建築物空間的照明裝置,為了傳感器系統的供電而會導致佈線和更換問題。本論文提出了一種智慧型光處理器,它結合光傳感器和光能獵能器組成能源自主傳感器系統。
通過將多個光電二極體放置在不同位置和在透鏡輔助下增加可辨別性,每個光電二極體的輸出功率將是不同的並且與入射光相關。為了同時光能獵能和感測,智慧型光處理器使用多輸入直流-直流轉換器,每個輸入連接到光電二極體。當光電二極體達到其最大功率點時,直流-直流轉換器執行操作並由光電二極體向存儲元件供電。光電二極體的獵能週期與功率成正比。通過對每個光電二極體獵能週期計數和進行數據處理,可以獲得諸如光強度和角度的光資訊。
本論文提出的智慧型光處理器有兩個積體電路實現,第一個採用台灣積體電路製造股份有限公司提供的 0.35μm 2P4M 3.3V混合信號互補式金氧半工藝製造,芯片面積為2.04mm2。它具有16個輸入,198nA控制器電流消耗及藉由微控制器輔助數據處理可實現高達±50º的光角度感測範圍。第二種採用台灣積體電路製造股份有限公司提供的0.18μm 1P6M 1.8V混合信號互補式金氧半工藝製造,芯片面積為1.52mm2。它具有9個輸入,55nA控制器電流消耗和進一步集成微控制器功能的單晶片。
In traditional lighting system of buildings, non-uniform distribution of light degrades human light experience as well as wasting lighting energy. Using light sensors for sensing information of environment light and feedback to control lighting fixtures is a solution. However, light sensors need large amount and widely deployed to control lighting fixtures of whole buildings space, which can lead to wiring and replacement problem due to powering of sensor system. This thesis proposed an intelligent light processor (ILP) which integrated light sensor and light energy harvester to form the energy autonomous sensor system.
By placing multiple photodiodes (PDs) on different position with lens assistance to increase discernibility, output power of each PD will be difference and correlated to the incident light. To simultaneously light energy harvest and light sense, the proposed ILP using multiple input DC-DC converter with each input connected to PDs. When PDs reach its maximum power point, the DC-DC converter performs operation and delivers power from PDs to storage element. The harvested period of PDs is proportional to PDs power. By counting each PD harvested period and data processing, the light information such as light intensity and angle can be obtained.
The proposed ILP has two IC implementations, the first is fabricated in TSMC 0.35μm 2P4M 3.3V Mixed-Signal CMOS process with chip area of 2.04mm2. It features 16 inputs, 198nA controller current consumption and up to ±50º light angle detection range with microcontroller (MCU) assisted in data process. The second is fabricated in TSMC 0.18μm 1P6M 1.8V Mixed-Signal CMOS process with chip area of 1.52mm2. It features 9 inputs, 55nA controller current consumption and further integrated MCU function into single chip.
[1] C. Basu, J. J. Caubel, K. Kim, E. Cheng, A. Dhinakaran, A. M. Agogino, R. A. Martin, “Sensor-Based Predictive Modeling for Smart Lighting in Grid-Integrated Buildings,” IEEE Sensors J., vol. 14, no. 12, pp. 4216-4229, Dec. 2014.
[2] S. Afshari and S. Mishra, “A plug-and-play realization of decentralized feedback control for smart lighting systems,” IEEE Trans. Control Syst. Technol., vol. 24, no. 4, pp. 1317-1327, Jul. 2016.
[3] J. Mix, K. Cunningham, “Task/Vertical/Ambient Lighting,” Energy Efficiency Emerging Technologies, Sep. 2013.
[4] GE Lighting, “The Evolving Workspace: Putting Light to Work in Office Design,” [Online]. Available: https://products.currentbyge.com/sites/products.currentbyge.com/files/documents/document_file/GE-The-Evolving-Workspace-Whitepaper.pdf.
[5] Y.-J. Wen, D. DiBartolomeo, and F. Rubinstein, “Co-simulation based building controls implementation with networked sensors and actuators,” in Proc. 3rd ACM Workshop Embedded Sens. Syst. Energy-Efficiency Buildings, pp. 55-60, 2011.
[6] K. Uchida and G. Teramichi, “New task and ambient lighting system with dual light distributions,” in 2015 IEEE Int. Conf. on Building Efficiency and Sustainable Technologies, pp. 1-4, 2015.
[7] C.-T. Chiang and J.-Y. Liou, “Design of a CMOS intelligent light sensing chip for automatic brightness tuning applications,” IEEE Sensors J., vol. 13, no. 12, pp. 4955-4961, Dec. 2013.
[8] H. Song, Z. Lu, T. Luo, J. B. Christen and H. Wang, “A CMOS Self-Powered Monolithic Light Direction Sensor with SAR ADC,” IEEE System-on-Chip Conference (SOCC), pp. 58-62, 2014.
[9] A. Fish, S. Hamami, and O. Yadid-Pecht, “CMOS image sensors with self-powered generation capability,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1210–1214, Nov. 2006.
[10] J. H. Ko, M. F. Amir, K. Z. Ahmed, T. Na and S. Mukhopadhyay, "A Single-Chip Image Sensor Node With Energy Harvesting From a CMOS Pixel Array," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2295-2307, Sep. 2017.
[11] M. K. Law, A. Bermak, and C. Shi, “A Low-Power Energy-Harvesting Logarithmic CMOS Image Sensor With Reconfigurable Resolution Using Two-Level Quantization Scheme,” in IEEE Trans. Circuits Syst. II Express Briefs, vol. 58, no. 2, pp. 80–84, Feb. 2011.
[12] A. Y.-C. Chiou and C.-C. Hsieh, “A 137 dB dynamic range and 0.32 V self-powered CMOS imager with energy harvesting pixels,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2769–2776, Nov. 2016.
[13] H. T. Wang and W. D. L.-Salas, "An Image Sensor With Joint Sensing and Energy Harvesting Functions," IEEE Sensors Journal, vol. 15, no.2, pp. 902-916,Feb. 2015.
[14] I. Cevik and S. U. Ay, “An ultra-low power energy harvesting and imaging (EHI) type CMOS APS imager with self-power capability,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 9, pp. 2177–2186, Sep. 2015.
[15] OSIOptoelectronics, “Photodiode Characteristics and Applications,” [Online]. Available: http://www.osioptoelectronics.com/application-notes/an-photodiode-parameters-characteristics.pdf.
[16] A. Nogier, G. Sicard, A. Peizerat, “A photovoltaic mode pixel Embedding energy harvesting capability For future self-powered image sensors,” IEEE International New Circuits and Systems Conference (NEWCAS), pp. 261-264, 2018.
[17] S. K. Nayar, D. C. Sims, and M. Fridberg, "Towards Self-Powered Cameras," in IEEE International Conference on Computational Photography (ICCP), pp. 1-10, 2015.
[18] K. Z. Ahmed, M. F. Amir, J. H. Ko and S. Mukhopadhyay, "Reconfigurable 96×128 active pixel sensor with 2.1µW/mm2 power generation and regulated multi-domain power delivery for self-powered imaging," European Solid-State Circuits Conference (ESSCIRC), pp. 507-510, 2016.
[19] Analog Devices, “Infrared Light Angle Sensor ADPD2140,” [Online.] Available: https://www.analog.com/media/en/technical-documentation/data-sheets/ADPD2140.pdf.
[20] W. Lim, D. Sylvester, D. Blaauw, “A sub-nW 80mlx-to-1.26Mlx self-referencing light-to-digital converter with AlGaAs photodiode,” in IEEE ISSCC Dig. Tech. Papers, pp. 72-73, 2017.
[21] V. Varghese and S. S. Chen, “Polarization-based angle sensitive pixels for light field image sensors with high spatio-angular resolution,” IEEE Sensors J., vol. 16, no. 13, pp. 5183–5194, Jul. 2016.
[22] F. Khan, A. Banerjee, M. Hasan, H. Kim, C.H. Mastrangelo, “Microfabricated single-lens Shack-Hartmann light angle sensor”, IEEE Sensors, pp. 1-3, 2017.
[23] ISO 8995-1 / CIE S 008/E.
[24] Y.-H. Wang, Y.-W. Huang, P.-C. Huang, H.-J. Chen, and T.-H. Kuo, “A single-inductor dual-path three-switch converter with energy-recycling technique for light energy harvesting,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2716-2728, Nov. 2016.
[25] S. S. Amin, P. P. Mercier, “MISIMO: A multi-input single-inductor multi-output energy harvester employing event-driven MPPT control to achieve 89% peak efficiency and a 60,000x dynamic range in 28nm FDSOI,” in IEEE ISSCC Dig. Tech. Papers, pp. 144-145, 2018.