| 研究生: |
何秋聖 Ho, Chiu-Sheng |
|---|---|
| 論文名稱: |
有機太陽能電池主動層薄膜濃度與結合雷射熱退火改善元件效率之研究 Study of improving polymer solar cell efficiency by using thermal and laser annealing |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 共同指導教授: |
李景松
Lee, Ching-Sung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 有機太陽能電池 、熱與雷射共同處理 、有機寬能隙材料 |
| 外文關鍵詞: | Organic solar cell, Thermal/laser co-treatment, Organic wide-band-gap material |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們探討有機太陽能電池之主動層濃度與退火機制,並結合有機寬能隙材料於有機太陽能電池中。由於有機太陽能電池的主動層濃度會因為熱退火的溫度不同,進而產生不同的表面型態而影響元件,因此探討主動層濃度對應於不同熱退火的溫度達到最佳的元件特性表現;並藉由有機材料對光的吸收特性,我們利用雷射照射結合熱退火的技術來提升有機高分子薄膜的排列;此外製作有機小分子太陽能電池,加入有機寬能隙薄膜於陽極與有機主動層之間。藉由摻雜有機寬能隙材料的特性應用於有機高分子太陽能電池元件,利用摻雜的方式加入於有機高分子主動層,可有效改善電洞傳輸,降低電子與電洞復合,改善元件特性
首先我們探討有機高分子材料:聚-3己烷塞吩與富勒烯衍生物之濃度對元件特性的影響,對於不同濃度(3、4、5 wt %)進行不同熱退火溫度的處理,從實驗結果得知,不同的主動層濃度其元件最佳的效率會對應到不同的退火溫度,濃度越高,其退火溫度也會隨之提升。在濃度4wt %的有機太陽能電池元件,經由130oC熱處理可獲得最佳的元件特性。
其次,利用雷射結合熱退火的製程應用於有機太陽能電池元件,由於有機材料聚-3己烷塞吩的吸收光譜範圍於綠光波段,因此利用波長532nm的綠光雷射,並結合前段最佳化的熱處理條件,用於主動層薄膜,藉此改善有機材料聚-3己烷塞吩的高分子鏈的排列與長度,並提升分子的結晶性,進而改善元件特性的表現。
第三,研製有機小分子太陽能電池之結構,藉由加入寛能隙電子阻擋層,藉以提升元件的光電流吸收效率,平衡載子收集於電極之效率增進短路電流,進而提升元件效率;嘗試使用三種寬能隙的電子阻擋層材料在最佳化的單異質接面太陽能電池的結構,材料分別為m-MTDATA、MeO-TPD、Ir(ppz)3,並調整各材料其最佳厚度,其結構為ITO/electron blocking layer/CuPc(30 nm)/C60(40 nm) /BCP(10 nm)/Al(100 nm)。其最佳厚度分別為m-MTDATA(4 nm)、MeO-TPD (3 nm)、Ir(ppz)3(0.5 nm)。
第四,利用摻雜有機寬能隙材料Tris(phenylpyrazole)iridium (Ir(ppz)3) 於主動層中,製作有機太陽能電池,藉由摻雜Ir(ppz)3可有效改善的電洞傳輸,使得電子與電洞傳輸平衡,進而提升短路電流,此外藉由摻雜此有機材料亦可增加主動層薄膜短波長的吸收強度;由實驗結果得知,摻雜1 mg的Ir(ppz)3可得到最好的元件效率,其元件特性之短路電流為11.8 mA/cm2、開路電壓為0.61 V、理想因子為0.59、功率元件轉換效率可達4.23 %;最後結合雷射熱退火技術與摻雜寬能隙材料之製程應用於有機太陽能電池,可以得到最佳的元件特性,其元件功率轉換效率可達4.54%。
In this dissertation, we studied the effect of organic solar cells active layer concentration and annealing treatment, and combined the organic wide-band-gap material. Due to different active layer concentrations and various annealing temperature would influence the surface morphology of active layers. We optimize the active layer concentration with different annealing temperature to achieve the best device performance. Furthermore, we use the 532nm laser combined with thermal annealing method to treat the polymer active layer for enhance polymer the crystallization. We also investigated the small molecular organic solar cell inserting a thin organic wide-band-gap layer between the anode and active layer to enhance the device performance. Moreover, we also try to dope the organic wide-band-gap material in the polymer active layer to enhance the hole transport and reduce the carrier recombination.
Firstly, we studied concentration of the polymer material: Poly (3-hexylthiophene) (P3HT): [6,6]-Phenyl-C61 butyric acid methyl ester (PCBM) of 3~5 wt% with various annealing temperature. For the optimized device performance, with higher concentration of active layer, the annealing temperature was higher. The best device performance was shown in concentration of 4 wt %, annealing temperature was 130 oC.
Secondly, we fabricated the polymer solar cells with laser and thermal annealing treatment. We used 532nm green laser as the laser annealing source because the maximum intensity of P3HT absorption spectrum is located at the range of green light. Combined laser and thermal annealing treatment can improve the P3HT polymer chains length and crystallization, also enhance the device performance.
Thirdly, we investigated the organic small molecular solar cell with using wide-band-gap electron-blocking layer, which can improve photocurrent absorption efficiency, balance carrier mobility between acceptor and donor can affect the carrier collection efficiency, and enhance the Jsc, Voc, and PCE. We choose three wide-band-gap materials as electron-blocking layer, including m-MTDATA, MeO-TPD, and Ir(ppz)3, and try to modulate the thickness of electron-blocking layer to optimize the best properties. The structure of OPV cell is ITO / electron-blocking layer / CuPc(30 nm) / C60 (40 nm)/ BCP(10nm) / Al(100nm). The optimal thickness is m-MTDATA (4 nm), MeO-TPD (3 nm), and Ir(ppz)3 (0.5 nm), respectively.
Fourthly, we doped the organic wide-bnad-gap material Tris(phenylpyrazole)iridium (Ir(ppz)3) in polymer active layer. By doping Ir(ppz)3 can enhance the hole transport and balance the electron and hole transport to enhance the current density of the device. Furthermore, the Ir(ppz)3 also enhance the absorption in the short wavelength. From the experiment result, doping 1mg Ir(ppz)3 showed the best device performance with Jsc is 11.8mA/cm2, Voc is 0.61V, FF is 0.60, PCE is 4.24%. Finally, we investigated the polymer solar cell device with doping 1mg Ir(ppz)3 and annealed by thermal & laser co-treatment, the device PCE is reach 4.54%.
[1] National Renewable Energy Laboratory (NREL) “Research Cell Efficiency Records,” http://www.nrel.gov/ncpv/, 2013.
[2] E. Becquerel, “Mémoire sur les effets électriques produits sous l'influence des rayons solaires,” Comptes Rendus Academy of Science, vol. 9, p. 145, 1839.
[3] H. Spanggaard, and F. C. Krebs, “A brief history of the development of organic and polymeric photovoltaics,” Solar Energy Materials and Solar Cells, vol. 83, p. 125, 2004.
[4] H. Hoegel. “On photoelectric effects in polymers and their sensitization by dopant,” Journal of Chemical Physics, vol. 69, p.755, 1965.
[5] B. R. Weinberger, M. Akhtar, and S. C. Gau, “Polyacetylene photovoltaic devices,” Synthetic Metals, vol. 4, p. 187, 1982.
[6] C. W. Tang, “Two-layer organic photovoltaic cell,” Applied Physics Letters, vol. 48, p. 183, 1986.
[7] H. Wei, H. Zhang, H. Sun, and B. Yang, “Preparation of polymer—nanocrystals hybrid solar cells through aqueous approaches,” Nano Today, vol. 7, p. 316, 2012.
[8] G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible‐ultraviolet sensitivity,” Applied Physics Letters, vol. 64, p. 3422, 1994.
[9] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery and, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nature Materials, vol. 4, p. 864, 2005.
[10] W. L. Ma, C. Y. Yang, X. Gong, K. G. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Advanced Functional Materials, vol. 15, p. 1617, 2005.
[11] B. C. Thompson, and J. M. J. Fre´ chet, “Polymer-fullerene composite solar cells”, Angewandte Chemie International Edition, vol. 47, p. 58, 2008.
[12] H. Hoppe, and N. S. Sariciftci, “Morphology of polymer/fullerene bulk heterojunction solar cells,” Journal of Materials Chemistry, vol.16, p. 45, 2006.
[13] X. N. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Letters, vol. 5, p.579, 2005.
[14] X. Yang, and J. Loos, “Toward high-performance polymer solar cells: the importance of morphology control,” Macromolecules, vol. 40, p. 1353, 2007.
[15] C. J. Bradec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Advanced Functional Materials, vol. 11 p. 15, 2001.
[16] S. S. Kim, S. I. Na, J. Jo, G. Tae, and D. Y. Kim, “Efficient polymer solar cells fabricated by simple brush painting,” Advanced Materials, vol. 19 p. 4410, 2007.
[17] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science, vol. 317, p.222, 2007.
[18] R. A. J. Janssen, J. C. Hummelen, and N. S. Sariciftci, “Polymer–fullerene bulk heterojunction solar cells,” MRS Bulletin, vol. 30 p. 30, 2005.
[19] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, ” Advanced Materials, vol.18, p.572, 2006.
[20] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science, vol. 270, p.1789, 1995.
[21] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Applied Physics Letters, vol. 78, p. 841, 2001.
[22] X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Letters, vol. 5, p. 579, 2005.
[23] D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites,” Nanotechnology, vol. 15, p. 1317, 2004.
[24] C. W. Chu, H. Yang, W. J. Hou, J. Huang, G. Li, and Y. Yang, “Control of the nanoscale crystallinity and phase separation in polymer solar cells,” Applied Physics Letters, vol. 92, p. 103306, 2008.
[25] V. D. Mihailetchi, H. Xie, B. De Boer, L. M. Popescu, J. C. Hummelen, P. W. M. Blom, and L. J. A. Koster, “Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer,” Applied Physics Letters, vol. 89, p. 012107, 2006.
[26] Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Applied Physics Letters, vol. 86, p. 063502, 2005.
[27] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Advanced Functional Materials, vol. 15, p. 1617, 2005.
[28] K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics,” Applied Physics Letters, vol. 90, p. 163511, 2007.
[29] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” Journal of Applied Physics, vol. 98, p. 043704, 2005.
[30] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nature Materials, vol. 4, p. 864, 2005.
[31] W. H. Baek, H. Yang, T. S. Yoon, C. J. Kang, H. H. Lee, and Y. S. Kim, “Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells,” Solar Energy Materials and Solar Cells, vol. 93, p. 1263, 2009.
[32] A. J. Moulé, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” Journal of Applied Physics, vol. 100, p. 094503, 2006.
[33] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based Bulk-heterojunction solar cells,” Advanced Functional Materials, vol. 14, p. 1005, 2004.
[34] V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li, and Y. Tang, “Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films,” Chemical Physics Letters, vol. 411, p. 138, 2005.
[35] P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics,” Solar Energy Materials and Solar Cells, vol. 90, p. 2150, 2006.
[36] M. Bajpai, K. Kumaria, R. Srivastava, M. N. Kamalasanana, R.S. Tiwari, and S. Chanda, “Electric field and temperature dependence of hole mobility in electroluminescent PDY 132 polymer thin films,” Solid State Communications, vol. 150, p. 581, 2010.
[37] E. Zhou, Z. Tan, C. Yang, and Y. Li, “Linking Polythiophene Chains Through Conjugated Bridges: A say to improve charge transport in polymer solar cells,” Macromolecular Rapid Communications, vol. 27, p. 793, 2006.
[38] E. Zhou, Z. Tan, Y. Yang, L. Huo, Y. Zou, C. Yang, and Y. Li, “Synthesis, hole mobility, and photovoltaic properties of cross-linked polythiophenes with vinylene−terthiophene−vinylene as conjugated bridge,” Macromolecules, vol. 40, p. 1831, 2007.
[39] Z. B. Wang, M. G. Helander, M. T. Greiner, J. Qiu, and Z. H. Lub, “Carrier mobility of organic semiconductors based on current-voltage characteristics,” Journal of Applied Physics, vol. 107, p. 034506, 2010.
[40] K. C. Lim, C. R. Fincher Jr., and A. J. Heeger, “Rod-to-coil transition of a conjugated polymer in solution,” Physical Review Letters, vol. 50, p. 1934, 1983.
[41] O. Inganas, W. R. Salaneck, J. E. Osterholm, and J. Laakso, “Thermochromic and solvatochromic effects in poly(3-hexylthiophene),” Synthetic Metals, vol. 22, p. 395, 1988.
[42] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic Devices based on conjugated polymers,” Science, vol. 280, p. 1741, 1998.
[43] G. Li, Y. Yao, H. Yang, V. Shirotriya, G. Yang, and Y. Yang, ““Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes,” Advanced Functional Materials, vol. 17, p. 1636, 2007.
[44] M. Al-lbrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene,” Applied Physics Letters, vol. 86, p. 201120, 2005.
[45] M.R. Reyes, K. Kim, and D.L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends,” Applied Physics Letters, vol. 87, p. 083506, 2005.
[46] C.S. Ho, E-L. Huang, W.C. Hsu, C.S. Lee, Y.N. Lai, E.P. Yao, and C.W. Wang, “Thermal effect on polymer solar cells with active layer concentrations of 3–5 wt%,” Synthetic Metals, vol. 162, p. 1164, 2012.
[47] Y. Zhao, X. Guo, Z. Xie, Y. Qu, Y. Geng, and L. Wang, “Solvent vapor-induced self assembly and its influence on optoelectronic conversion of poly(3-hexylthiophene): methanofullerene bulk heterojunction photovoltaic cells,” Journal of Applied Polymer Science, vol. 111, p. 1799, 2009.
[48] T. Hu, F. Zhang, Z. Xu, S. Zhao, X. Yue, and G. Yuan, “Effect of UV–ozone treatment on ITO and post-annealing on the performance of organic solar cells,” Synthetic Metals, vol. 159, p. 754, 2009.
[49] H. Flugge, H. Schmidt, T. Riedl, S. Schmale, T. Rabe, J. Fahlbusch, M. Danilov, H. Spieker, J. Schobel, and W. Kowalsky, “Microwave annealing of polymer solar cells with various transparent anode materials,” Applied Physics Letters, vol. 97, p. 123306, 2010.
[50] E.W. Okraku, M.C. Gupta, and K.D. Wright, “Pulsed laser annealing of P3HT/PCBM organic solar cells,” Solar Energy Materials and Solar Cells, vol. 94, p. 2013, 2010.
[51] V. D. Mihailetchi, H. X. Xie, B. D. Boer, L. J. A. Koster, and P. W. M. Blom, “Charge transport and photocurrent generation in poly(3-hexylthiophene): methanofullerene bulk-heterojunction solar cells,” Advanced Functional Materials, vol. 16, p. 699, 2006.
[52] W. C. Tsoi, D. T. James, J. S. Kim, P. G. Nicholson, C. E. Murphy, D. D. C. Bradley, J. Nelso, and J. S. Kim, “The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT:PCBM blend thin films,” Journal of the American Chemical Society, vol. 133, p. 9834, 2011.
[53] S. Falke, P. Eravuchira, A. Materny, and C. Lienau, “Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends,” Journal of Raman Spectroscopy, vol. 42, p. 1897, 2011.
[54] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (SERS),” Physical Review Letters, vol. 78, p. 1667, 1997.
[55] Y. Gao, and J. K. Grey, “Resonance chemical imaging of polythiophene/fullerene photovoltaic thin films: mapping morphology-dependent aggregated and unaggregated C=C species,” Journal of the American Chemical Society, vol. 131, p. 9654, 2009.
[56] U. Zhokhavets, T. Erb, H. Hoppe, G. Gobsch, and N. S. Sariciftci, “Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties,” Thin Solid Films, vol. 496, p. 679, 2006.
[57] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf, and C.J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells,” Advanced Functional Materials, vol. 15, p. 1193, 2005.
[58] C. Y. Yang, C. Soci, D. Moses, and A. J. Heeger, “Aligned rrP3HT film: structural order and transport properties,” Synthetic Metals, vo. 155, p. 639, 2005.
[59] K. Kanai, T. Miyazaki, H. Suzuki, M. Inaba, Y. Ouchi, and K. Seki, “Effect of annealing on the electronic structure of poly(3-hexylthiophene) thin film,” Physical Chemistry Chemical Physics, vol. 12, p. 273, 2010.
[60] P. Peumans, and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Applied Physics Letters, vol. 79, p. 126, 2001.
[61] P. Vivo, J. Jukola, M. Ojala, V. Chukharev, and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air,” Solar Energy Materials and Solar Cells, vol. 92, p. 1416, 2008.
[62] J. H. Kim, S. Y. Huh, T. I. Kim, and H. H. Lee, Thin pentacene interlayer for polymer bulk-heterojunction solar cell, Applied Physics Letters, vol. 93, p. 143305, 2008.
[63] J. G. Xue, S. Uchida, B. P. S. Uchida, and S. R. Forrest, 4.2% efficient organic photovoltaic cells with low series resistances,” Applied Physics Letters, vol. 84, p. 3013, 2004.
[64] S. H. Lee, D. H. Kim, J. H. Kim, T. H. Shim, and J. G. Park, Impact of donor, acceptor, and blocking layer thickness on power conversion efficiency for small-molecular organic solar cells,” Synthetic Metals, vol. 159, p. 1705, 2009.
[65] Q. L. Song, F. Y. Li, H. Yang, H. R. Wu, X. Z. Wang, W. Zhou, J. M. Zhao, X. M. Ding, C. H. Huang, and X. Y. Hou, “Small-molecule organic solar cells with improved stability,” Chemical Physics Letters, vol. 416, p. 42, 2005.
[66] Z. R. Hong, Z. H. Huang, and X. T. Zeng, “Investigation into effects of electron transporting materials on organic solar cells with copper phthalocyanine/C60 heterojunctions,” Chemical Physics Letters, vol. 425, p. 62, 2006.
[67] J. G. Xue, S. Uchida, B. P. S. Uchida, S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Applied Physics Letters, vol. 84, p. 5757, 2004.
[68] B. Yu, F. Zhu, H. Wang, G. Li, and D. Yan, “All-organic tunnel junctions as connecting units in tandem organic solar cell,” Journal of Applied Physics, vol. 104, p. 114503, 2008.
[69] F. Liu, and J. M. Nunzi, “Air stable hybrid inverted tandem solar cell design,” Applied Physics Letters, vol. 99, p. 063301, 2011.
[70] N. Li, B. E. Lassiter, R. R. Lunt, G. Wei, and S. R. Forrest, “Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells,” Applied Physics Letters, vol. 94, p. 023307, 2009.
[71] Y. Lou, Z. Wang, S. Naka, and H. Okada, “Enhanced short-circuit current density in poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 based organic solar cells by doping small molecular perylene,” Applied Physics Letters, vol. 99, p. 033305, 2011.
[72] J. Peet, A. B. Tamayo, X.-D. Dang, J. H. Seo, and T.-Q. Nguyen, “Small molecule sensitizers for near-infrared absorption in polymer bulk heterojunction solar cells,” Applied Physics Letters, vol. 93, p. 163306, 2008.
[73] F. X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, and D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Applied Physics Letters, vol. 99, p. 153304, 2011.
[74] R. J. Holmes, S. R. Forrest, T. Sajoto, A. Tamayo, P. I. Djurovich, M. E. Thompson, J. Brooks, Y.-J. Tung, B. W. D’Andrade, M. S. Weaver, R. C. Kwong, and J. J. Brown, “Saturated deep blue organic electrophosphorescence using a fluorine-free emitter,” Applied Physics Letters, vol. 87, p. 243507, 2005.
[75] C. S. Ho, C. S. Lee, W. C. Hsu, C. Y. Lin, Y. N. Lai, and C. W. Wang, “Efficiency improvements in single-heterojunction organic photovoltaic cells by insertion of wide-bandgap electron-blocking layers,” Solid-State Electronics, vol. 76, p. 101, 2012.
[76] Y. C. Huang, Y. C. Liao, S. S. Li, M. C. Wu, C. W. Chen, and W. F. Su, “Study of the effect of annealing process on the performance of P3HT/PCBM photovoltaic devices using scanning-probe microscopy,” Solar Energy Materials and Solar Cells, vol. 93, p. 888, 2009.
[77] F. X. Xie, W. C. H. Choy, X. L. Zhu, X. L. Li, Z. Li, and C. J. Liang, “Improving polymer solar cell performances by manipulating the self-organization of polymer,” Applied Physics Letters, vol. 98, p. 243302, 2011.
[78] J. S. Kim, J. H. Lee , J. H. Park , C. Shim , M. Sim, and K. Cho, “High-efficiency organic solar cells based on preformed poly(3-hexylthiophene) nanowires,” Advanced Functional Materials, vol. 21, p. 480, 2011.
校內:2019-01-22公開