簡易檢索 / 詳目顯示

研究生: 呂學錡
Lu, Hsueh-Chi
論文名稱: 相斥型擺線磁性齒輪減速機滑移扭矩分析
Slip Torque Analysis of Repulsive Cycloidal Magnetic Gear Reducer
指導教授: 蔡明祺
Tsai, Mi-Ching
黃柏維
Huang, Po-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 107
中文關鍵詞: 擺線齒輪擺線磁性齒輪磁通調製諧波分析滑移扭矩
外文關鍵詞: cycloidal gear, cycloidal magnetic gear, magnetic field modulation, harmonic analysis, slip torque
相關次數: 點閱:42下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 擺線減速機(Cycloidal Reducers)在工業上運用甚廣,具有高減速比、體積小及乘載能力大等特點,本研究的主要目的在於解決傳統機械式擺線齒輪的接觸產生的磨耗問題,以永磁體的磁場耦合代替機械齒輪的嚙合為研究目標。為了降低高速軸的徑向承受力,本文採用擺相斥極性的永磁體排列來當作本研究的分析模型。
    以建立擺線齒輪的線速度等式,來探討減速關係。在計算磁轉矩方面,於計算磁通密度分佈的過程中加入偏心條件,得出其基本波值解。在有限元素模擬方面,將擺線齒輪模型以正齒輪運動模式作其靜磁場分析及暫態分析,並評估永磁體展開角角度設計,將其進行諧波分析,進而確定偏心對於磁場調製的影響,以期能得到更佳的傳動性。最後,探討擺線磁性齒輪減速機在失步時所能承受得最大扭矩值,稱其為「滑移扭矩值(Slip Torque)」。
    在數學的模型建立基礎上,利用Ansys Maxwell 2D建立擺線磁性齒輪建模計算,並與偏微分解進行對照驗證,實現了對於擺線磁性齒輪減速機的滑移扭矩值的研究。最終,將模擬結果與實測扭矩進行比對,總結了擺線磁性齒輪滑移扭矩值的計算、模擬及實測的結論。

    Cycloidal reducers are widely adopted in industry for their high reduction ratio, compact size, and robust load capacity. This research aims to address wear issues associated with traditional mechanical cycloidal gears by proposing a magnetic field coupling approach using permanent magnets. This method seeks to replace mechanical gear meshing with magnetics interaction to mitigate radial bearing force on the high-speed shaft. The configuration employs repelling polarity permanent magnets on both the cycloidal magnetic gear and the outer ring magnetic gear.
    The study establishes the linear velocity equation of the cycloidal gear to analyze deceleration relationships. Magnetic torque calculations consider eccentricity conditions to determine the basic wave value of the magnetic flux density distribution. The cycloidal gear model is simulated using finite element analysis in the spur gear motion mode, encompassing static and transient magnetic field analysis. The design of the permanent magnet expansion angle is evaluated, while and harmonic analysis is performed to assess the impact of eccentricity on magnetic field modulation for improved better transmission performance.
    Furthermore, the study also investigates the “slip torque,” the maximum torque that the cycloidal magnetic gear reducer can sustain when out of step. Using ANSYS Maxwell 2D, the mathematical model of the cycloidal magnetic gear is established, and its calculations are compared and verified with partial differential decomposition. The study concludes by comparing simulation results with measured torque to summarize the findings on the slip torque value of the cycloidal magnetic gear reducer.

    中文摘要 I Abstract II 誌謝 XIV 目錄 XVI 表目錄 XIX 圖目錄 XX 符號表 XXIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 文獻回顧 5 1.3.1 同軸磁性齒輪 5 1.3.2 機械式擺線齒輪減速機[10] 7 1.3.3 擺線磁性齒輪減速機 9 1.4 論文章節概要 11 第二章 擺線減速機的結構及原理 13 2.1 擺線減速機運動學 13 2.2 擺線磁性減速機機構 16 2.3 計算線性氣隙中的磁通密度分佈 17 2.4 磁轉矩的形成 20 2.5 擺線磁性齒輪的多種工作型態 21 第三章 基於有限元素法的擺線磁性齒輪性能分析 24 3.1 建模與剖分 24 3.2 靜磁場分析 25 3.2.1 磁鐵展開角設置 25 3.2.2 滑移轉矩 27 3.3 諧波分析驗證 28 3.3.1 僅保留擺線磁性齒輪 29 3.3.2 僅保留外環磁性齒輪 31 3.3.3 組合形態 33 3.4 暫態模擬分析 37 3.4.1 響應曲線 38 3.4.2 加載模擬 39 第四章 擺線磁性齒輪減速機的磁場解析計算 42 4.1 磁場解析計算概述 42 4.2 問題與描述 43 4.3 問題的求解 48 4.3.1 氣隙中的磁場分佈 48 4.3.2 擺線磁性齒輪永磁體中的磁場分佈 48 4.4 磁場計算結果及分析 50 4.5 轉矩計算結果及分析 54 第五章 模擬結果與實作實驗數據比較 56 5.1 擺線磁性齒輪減速機設計架構 56 5.2 實際減速機實作 58 5.3 實作與實驗數據 60 5.3.1 角度與扭矩關係圖實驗 60 5.3.2 滑移扭矩值實驗 63 5.3.3 增加負載測量動態實測實驗 64 5.4 模擬結果與實作數據比較 66 第六章 結論與未來研究方向 70 6.1 結論 70 6.2 未來建議 70 參考文獻 72

    [1] L. Zhao et al., “A Highly Efficient 200 000 RPM Permanent Magnet Motor System,” IEEE Trans. Magn., vol. 43, no. 6, pp. 2528-2530, June 2007.
    [2] M. Johnson, M. C. Gardner, H. A. Toliyat, S. Englebretson, W. Ouyang, and C. Tschida, “Design, construction, and analysis of a large scale inner stator radial flux magnetically geared generator for wave energy conversion,” IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3305–3314, Jul./Aug. 2018.
    [3] R. -S. Dragan, R. Barrett, S. Calverley, J. Moreu, and K. Atallah, “Pseudodirect-drive electrical machine for a floating marine turbine,” IEEE Trans. Magn., vol. 58, no. 2, pp. 1–5, Feb. 2022.
    [4] K. Li, S. Modaresahmadi, W. B. Williams, J. D. Wright, D. Som, and J. Z. Bird, “Designing and experimentally testing a magnetic gearbox for a wind turbine demonstrator,” IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 3522–3533, Jul./Aug. 2019.
    [5] A. B. Kjaer, S. Korsgaard, S. S. Nielsen, L. Demsa, and P. O. Rasmussen, “Design, fabrication, test, and benchmark of a magnetically geared permanent magnet generator for wind power generation,” IEEE Trans. Energy Convers., vol. 35, no. 1, pp. 24–32, Mar. 2020.
    [6] P. O. Rasmussen, T. V. Frandsen, K. K. Jensen, and K. Jessen, “Experimental evaluation of a motor-integrated permanent-magnet gear,” IEEE Trans. Ind. Appl., vol. 49, no. 2, pp. 850–859, Mar./Apr. 2013.
    [7] F. T. Jorgensen, T. O. Andersen and P. O. Rasmussen, “The cycloid permanent magnetic gear,” IEEE Ind. Appli. Conference Forty-First IAS Annual Meeting, 2006, pp. 373-378.
    [8] H. T. Faus, “Magnet Gearing,” Aug. 21, 1940
    [9] K. Atallah and D. Howe, ‘‘A novel high-performance magnetic gear,’’IEEE Trans. Magn., vol. 37, no. 4, pp. 2844–2846, Jul. 2001.
    [10] Joong-Ho Shin, Soon-Man Kwon, “On the lobe profile design in a cycloid reducer using instant velocity center,” Mechanism and Machine Theory, Volume 41, Issue 5, Pages 596-616, 2006.
    [11] E.P. Pollitt, “Some applications of the cycloid machine design,” ASME Journal of Engineering for Industry, Nov 1960.
    [12] Dion, J., Pawelski, Z., Chianca, V., Zdziennicki, Z., Peyret, N., Uszpolewicz, G., Ormezowski, J., Mitukiewicz, G., and Lelasseux, X. (October 14, 2019). "Theoretical and Experimental Study for An Improved Cycloid Drive Model." ASME Journal of Applied Mechanics, January 2020.
    [13] H. Huang, R. Qu and J. Bird, "Performance of Halbach Cycloidal Magnetic Gears with Respect to Torque Density and Gear Ratio," IEEE International Elec. Machines & Drives Conference, 2019.
    [14] P. -H. Liao, M. -C. Tsai, H. -C. Lu, P. -W. Huang and T. -W. Chang, "Cycloidal Magnetic Gear Utilizing Magnetic Repulsion Characteristics," IEEE Trans. Magn., Jan. 2024.
    [15] B. Praslicka et al., "Design and Analysis of a Novel, Low-Cost, High-Speed Cycloidal Magnetic Gear for Aerospace Servo Actuator Applications," in IEEE/ASME Transactions on Mechatronics, vol. 28, no. 6, pp. 3352-3363, Dec. 2023.
    [16] Ha-Yong Kim and Chong-Won Lee, "Analysis of eddy-current loss for design of small active magnetic bearings with solid core and rotor," IEEE Trans. Magn., vol. 40, no. 5, pp. 3293-3301, Sept. 2004
    [17] T. Saito, S. Takemoto and T. Iriyama, "Resistivity and core size dependencies of eddy current loss for Fe-Si compressed cores," IEEE Trans. Magn., vol. 41, no. 10, pp. 3301-3303, Oct. 2005
    [18] Z. P. Xia, Z. Q. Zhu and D. Howe, "Analytical magnetic field analysis of Halbach magnetized permanent-magnet machines," IEEE Trans. Magn., vol. 40, no. 4, pp. 1864-1872, July 2004,
    [19] M. Amrhein and P. T. Krein, "Force Calculation in 3-D Magnetic Equivalent Circuit Networks With a Maxwell Stress Tensor," IEEE Trans. on Energy Conversion, vol. 24, no. 3, pp. 587-593, Sept. 2009
    [20] G. Duan et al., "Cycloidal Magnetic Gear Combining Axial and Radial Topologies," IEEE Transactions on Energy Conversion, vol. 37, no. 3, pp. 2130-2137, Sept. 2022
    [21] Z. J. Liu and J. T. Li, "Accurate Prediction of Magnetic Field and Magnetic Forces in Permanent Magnet Motors Using an Analytical Solution," IEEE Transactions on Energy Conversion, vol. 23, no. 3, pp. 717-726, Sept. 2008
    [22] Liu, Z.J., Li, J.T., Jabbar, M.A. “Prediction and analysis of magnetic forces in permanent magnet brushless dc motor with rotor eccentricity,” Journal of Applied Physics, 2006.
    [23] Liu, Z.J., Li, J.T. “An improved analytical solution for predicting magnetic forces in permanent magnet motors,” AIP Publishing, 2008.
    [24] F. Dubas and C. Espanet, “Analytical Solution of the Magnetic Field in Permanent-Magnet Motors Taking Into Account Slotting Effect: No-Load Vector Potential and Flux Density Calculation,” IEEE Trans. Magn., vol. 45, no. 5, pp. 2097-2109, May 2009
    [25] P. Virtic, P. Pisek, T. Marcic, M. Hadziselimovic and B. Stumberger, “Analytical Analysis of Magnetic Field and Back Electromotive Force Calculation of an Axial-Flux Permanent Magnet Synchronous Generator With Coreless Stator,” IEEE Trans. Magn., vol. 44, no. 11, pp. 4333-4336, Nov. 2008.
    [26] T. Lubin, S. Mezani and A. Rezzoug, “Exact Analytical Method for Magnetic Field Computation in the Air Gap of Cylindrical Electrical Machines Considering Slotting Effects,” IEEE Trans. Magn., vol. 46, no. 4, pp. 1092-1099, April 2010.

    下載圖示 校內:2025-07-10公開
    校外:2025-07-10公開
    QR CODE