簡易檢索 / 詳目顯示

研究生: 吳宏偉
Wu, Hung-Wei
論文名稱: 薄膜微帶線與介間物質在微波被動元件之研究
Study of Thin Film Microstrip Line and Metamaterial on Microwave Passive Devices
指導教授: 蘇炎坤
Su, Yan-Kuin
翁敏航
Weng, Min-Hang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 149
中文關鍵詞: 薄膜微帶線低介電微波量測介間物質
外文關鍵詞: Low K, thin film microstrip line, metamaterial, microwave measurement
相關次數: 點閱:178下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成三大部分:(a) 低介電薄膜微帶線之製備;(b) 低介電材料之微波量測;(c) 介間物質與多頻帶微波濾波元件之設計。
    (a) 低介電薄膜微帶線之製備與研究
    在第一部份中,本論文提出一種製作於低介電材料上之薄膜微帶線,並探討其微波特性與平均功率承載能力(Average Power Handling Capability, APHC)。該薄膜微帶線之介電層係使用低介電常數(Low K)材料-Polyimide。在製程上,我們使用低成本的標準矽晶(Standard Low Resistivity Silicon, LRS, )作為基板;將Polyimide旋鍍約20µm至表面具有2µm鋁金屬之LRS上,再使用sputter濺鍍約2µm之鋁金屬至Polyimide上。成功製作出線寬為60µm,長度為2000µm之薄膜微帶線。在損失機制與平均功率承載能力的分析上,我們將探討在1-50GHz間,外加dc-Bias的變化對於薄膜傳輸線之有效介電常數、損耗正切與平均功率承載能力的影響。該薄膜微帶線可廣泛應用於射頻積體電路(Radio Frequency Integrated Circuit, RFIC)中。
    (b) 低介電材料之微波量測
    在第二部份中,本論文使用有限接地面之微帶線結構(Microstrip line)作為量測該低介電材料微波特性之方法。藉由高頻on-wafer與傳輸線結構之高頻量測技術,可準確地確認該低介電材料在無偏壓與偏壓情況下之微波特性與最大功率承載能力。特別是在加入偏壓下之研究,其可有效評估RF SoC的可能性。
    (c) 介間物質與多頻帶微波濾波元件之設計。
    在第三部份中,本論文提出介間物質(metamaterial)結構,其為一種能夠產生負導磁係數或負介電係數之自然或人造物質,可用於改變特定電磁波的傳播現象。介間物質結構應用在微波元件上是目前應用於無線通訊射頻前端中極具前瞻性的技術之一。本論文以互補式分離式環形共振器(Complementary Split Ring Resonator,CSRR)結構為主,設計並應用該CSRR於微波濾波元件上,並評估製作於矽基板上之可行性。另外,本論文亦使用步階式阻抗共振器設計具有多頻帶特性之濾波元件,以符合無線區域網路之規格。
    最後,本論文亦對系統晶片整合技術(SoC)提出一些建議與未來工作方向。

    This dissertation divides into three parts: (a) Preparation of thin film microstrip line using low K dielectrics; (b) microwave measurements of the low K dielectric materials and (c) design of filter with metamaterial and with multi-band performance.
    (a) Preparation of thin film microstrip line using low K dielectrics
    In the first part of the dissertation, we propose a detailed fabricating process and characterization of thin film microstrip line (TFML) on low K polyimide. By incorporating a spin-on dielectric polyimide and sputtering of aluminum, the TFML is fabricated on low cost low resistivity silicon (LRS) substrate ( ), the TFML with a thickness of 20μm polyimide dielectric layer presents attenuation losses of 0.385 dB/mm at 25 GHz and 0.438 dB/mm at 50 GHz. Effective dielectric constants, loss tangent and average power handling capability (APHC) of TFML on polyimide are carefully investigated and discussed. Additionally, the microwave characteristics of the dc-biased TFML were studied. This characterization of the TFML can be extensively applied on the interconnection of radio frequency integrated circuit (RFIC).
    (b) Microwave measurements of the Low K dielectric materials
    In the second part of the dissertation, we present a novel finite ground microstrip line to develop and to measure the microwave properties of TFML. By using the high frequency on-wafer and transmission line measurement technique, the low K dielectric can be accurately determined in the microwave properties and APHC under the condition for without dc-bias and with dc-bias. Especially in the case with dc-bias that can effectively evaluate the possibility of RF SoC.
    (c) Filter design with metamaterial and with multi-band performance
    In the third part of the dissertation, we discuss the propagation characteristics of single complementary split-ring resonator (CSRR) in planar transmission media. We also applied the periodic CSRRs to suppress the harmonics of the conventional dual-mode ring bandpass filter (BPF) by using the propagation characteristics of the periodic CSRRs. Additionally, we present a dual-band filter using stepped impedance resonator (SIR). The BPF has good dual-passband performances at 2.4 / 5.2 GHz and high isolation between the two passbands. The dual-band BPF has a smaller area and lower insertion loss in comparison of previous works.
    Finally, some suggestions are made in the future work on technology for system on chip (SoC).

    摘要 i Abstract iii Acknowledgement v Contents vii Table Content x Figure Content xi Chapter 1 General Introduction 1 1.1 Background 1 1.2 General review of thin film microstrip line (TFML) 2 1.3 Dielectric theory 3 1.4 Microwave measurement for dielectric material 4 1.5 Basic theory of microwave filters 5 1.6 Organization of this dissertation 6 Chapter 2 Fabrication of Low Loss Thin Film Microstrip Line (TFML) on Low Resistivity Silicon for RF Applications 17 2.1 Introduction 17 2.2 Fabrication process of TFML 19 2.3 Measured results and discussions 22 2.4 Summary 24 Chapter 3 Microwave Properties of Thin Film Microstrip Line For RF Applications 33 3.1 Introduction 33 3.2 Experimental 34 3.3 Results and Discussions 37 3.4 Summary 39 Chapter 4 Equivalent Lumped Elements of DC-Biased Thin Film Microstrip Line in Monolithic Microwave Integrated Circuits (MMICs) 49 4.1 Introduction 49 4.2 Experimental 50 4.3 Results and discussions 51 4.4 Summary 53 Chapter 5 Average Power Handling Capability (APHC) of DC-biased Thin Film Microstrip Line on Polyimide Substrate 60 5.1 Introduction 60 5.2 Characterization 61 5.3 Experiments 62 5.4 Summary 64 Chapter 6 Propagation Characteristics, Equivalent Circuit and Wide Bandgap Enhancement in Complementary Split Ring Resonator (CSRR) Based Microstrip Filtering Devices 69 6.1 Introduction 69 6.2 Propagation Characteristics of CSRR 70 6.3 An Accurate Equivalent Circuit for Etched Resonator with Effective Negative Permittivity 74 6.3.1 Equivalent Circuit for Single-cell CSRR 74 6.3.2 Results 77 6.4 A Compact Narrow-Band Microstrip Bandpass Filter with a Complementary Split-Ring Resonator 78 6.4.1 Design Procedure 78 6.4.2 Results and Discussions 79 6.5 Improved Stopband of the Dual-Mode Ring Bandpass Filter Using Periodic Complementary Spilt-Ring Resonators 81 6.5.1 Design of a BPF with Wide Stopband 81 6.5.2 Simulated and Measured Results 82 6.6 Summary 83 Chapter 7 Spurious Suppression in Bandpass Filters with EBG Cells for Multi-Chip-Module (MCM) 101 7.1 Introduction 101 7.2 Parallel Coupled BPF with C-shaped EBG 102 7.2.1 Design Procedure 102 7.2.2 Fabrication and Measured Results 104 7.3 Spurious Suppression of a Dual-Mode Bandpass Filter Using Simple C-Shaped EBG Cells 105 7.3.1 Design Procedure 105 7.3.2 Simulated and Measured Results 107 7.4 Spurious Suppression of a Parallel Coupled Microstrip Bandpass Filter with Simple Ring EBG Cells on the Middle Layer 109 7.4.1 Design Procedure 109 7.5 Summary 111 Chapter 8 Design of Novel Dual-Band Bandpass Filters Using Stepped Impedance Resonators (SIRs) 125 8.1 Introduction 125 8.2 Design Procedure 126 8.3 Results and Discussion 128 8.4 Summary 128 Chapter 9 Conclusion and Future Work 134 9.1 Conclusion 134 9.2 Future work 136 References 137 List of Publications 143 Vita 149

    [1] R. R. Tummala, E. J. Rayaszewski, Microelectronic Packaging Handbook, Van Nostrand Reinold, New York, 1989.
    [2] J. Baliga, “System-in-package uses silicon substrate,” Semicond. Int., vol. 27, no. 9, pp. 32, Aug. 2004.
    [3] J. F. Luy and P. Russer, Silicon-Based Millimeter-Wave Devices, ser. Springer Series in Electronics and Photonics. Berlin, Germany: Springer-Verlag, 1994.
    [4] J. Y. C. Chang, A. A. Abidi, and M. Gaitan, “Large suspended inductors on silicon and their use in a 2-μm CMOS RF amplifier,” IEEE Electron Device Lett., vol. 14, no. , pp. 246-248, 1993.
    [5] H. S. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco, and J. A. C. Stewart, “Low-loss CPW lines on surface stabilized high-resistivity silicon,” IEEE Microw. Guided Wave Lett., 9, (1999), pp. 395-397.
    [6] K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, J. Liu, S. C. Chien, D. S. Duh, and W. J. Lin, “Low RF noise and power loss for ion-implanted Si having an improved implantation process,” IEEE Electron. Device Lett., 24, (2003), pp. 28-30.
    [7] K. J. Herrick, T. A. Schwarz, and L. P. B. Katehi, “Si-micromachined coplanar waveguides for use in high-frequency circuits,” IEEE Trans. Microw. Theory Tech., 46, (1998), pp. 762-768.
    [8] G. E. Ponchak, A. Margomenos, and L. P. B. Katehi, “Low-loss CPW on low-resistivity Si substrates with a micromachined polyimide interface layer for RFIC interconnects,” IEEE Trans. Microw. Theory Tech., 49, (2001), pp. 866-870.
    [9] L. L. W. Leung, W. C. Hon, and K. J. Chen, “Low-loss coplanar waveguides interconnects on low-resistivity silicon substrate,” IEEE Trans. Comp., Packag., Manufact. Technol., 27, (2004), pp. 507-512.
    [10] G. E. Ponchak and A. N. Downey, “Characterization of thin film microstrip lines on polyimide,” IEEE Trans. comp. pack. Manufact. Technol., 21, (1998), pp. 171-176.
    [11] G. E. Ponchak and L. P. B. Katehi, “Measured attenuation of coplanar waveguide on CMOS grade silicon substrate with polyimide interface layer,” IEE Electron. Lett., 34, (1998), pp. 1327-1329.
    [12] G. E. Ponchak, “RF transmission lines on silicon substrate,” in Proc. 29th Eur. Microwave Conf., Oct. 1999, pp. 158–161.
    [13] G. Six, G. Prigent, G. Dambrine, and H. Happy, “Fabrication and characterization of low-loss TFMS on silicon substrate up to 220 GHz,” IEEE Trans. Microw. Theory Tech., 53, (2005), pp. 301-305.
    [14] K. Nishikawa, S. Sugitani, K. Inoue, T. Ishii, K. Kamogawa, B. Piernas, and K. Araki, “Low loss passive components on BCB-based 3-D MMIC technology,” in IEEE MTT-S Int. Microwave Symp. Dig., (2001), pp. 1881–1884.
    [15] J. Kim, Y. Qian, G. Feng, P. Ma, M. F. Chang, and T. Itoh, “Millimeter wave silicon MMIC interconnect and coupler using multilayer polyimide technology,” IEEE Trans. Microw. Theory Tech., 48, (2000), pp. 1482–1486.
    [16] W. S. Kim, T. H. Hong, E. S. Kim and K. H. Yoon, “Microwave Dielectric Properties and Far Infrared Reflectively Spectra of the (Zr0.8, Sn0.2) TiO4 Ceramics with Additives,“ Jpn. J. Appl. Phys., 37, (1998), pp. 5367-5371.
    [17] R. Kudesia, A. E. Mchale and R. L. Snyder, “Effect of LaO2/ZnO Additives on Microstructure and Microwave Dielectric Properties of Zr0.8Sn0.2TiO4 Ceramics,“ J. Am. Ceram. Soc., 77, (1994), pp. 3215-3220.
    [18] T. C. Edwards, Foundations for Microstrip Circuit Design, John Wiley & Sons, Inc., West Sussex, England, 1992.
    [19] J. F. Luy, K. M. Strohm, H. E. Sasse, A. Schuppen, J. Buechler, M. Wollitzer, A. Gruhle, F. Schaffler, U. Guettich, and A. Klaaben, “Si/SiGe MMIC's,” IEEE Trans. Microw. Theory Tech., (1995), pp. 705-714.
    [20] Y. Kwon, H. T. Kim, J. H. Park, and Y. K. Kim, “Low-loss micromachined inverted overlay CPW lines with wide impedance ranges and inherent airbridge connection capability,” IEEE Microw. Wireless Compon. Lett., (2001), pp. 59-61.
    [21] G. Six, G. Prigent, G. Dambrine, and H. Happy, “Fabrication and Characterization of Low-Loss TFMS on Silicon Substrate Up to 220 GHz,” IEEE Trans. Microw. Theory Tech., (2005), pp. 301-305.
    [22] Zeland Software, Inc., IE3D Simulator, 1997.
    [23] Eternal Inc., http://www.eternal.com.tw
    [24] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd Edition, Artech House, 1996.
    [25] D. M. Pozar, Microwave Engineering, 2nd Edition, John Wiley & Sons, Inc., 1998.
    [26] H. W. Wu, M. H. Weng, Y. K. Su, R. Y. Yang and C. Y. Hung, “Characteristics of Low K Thin Film Microstrip Line on Standard Lossy Silicon Substrate for RFICs,” Microw. Opt. Tech. Lett., (2007). pp 79-83.
    [27] HFSS simulator, Ansoft, Palo Alto, CA.
    [28] L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, V. K. Varadan, Microwave Electronics, John Wiley & Sons, Inc., West Sussex, England, 2004.
    [29] R. A. Pucel, D. J. Masse, and C. P. Harteig, “Losses in Microstrip,” IEEE Trans. Microw. Theory Tech., 16, (1968), pp. 342-350.
    [30] J. Lee, W. Ryu, J. Kim, J. Lee, N. Kim, J. Pak, J. M. Kim, and J. Kim, “Microwave Frequency Interconnection Line Model of a Wafer Level Package,” IEEE Trans. Adv. Packag., 25, (2002), pp. 356-364.
    [31] R. E. Collin, Foundations for Microwave Engineering, McGraw-Hill, Inc., 1992.
    [32] J. Baliga, “System-in-package uses silicon substrate,” Semicond. Int., 27, (2004), p. 32.
    [33] K. Nishikawa, S. Sugitani, K. Inoue, T. Ishii, K. Kamogawa, B. Piernas and K. Araki, “Low loss passive components on BCB-based 3-D MMIC technology,” in IEEE MTT-S Int. Microw. Symp. Dig., (2001), pp. 1881–1884.
    [34] J. Kim, Y. Qian, G. Feng, P. Ma, M. F. Chang and T. Itoh, “Millimeter wave silicon MMIC interconnect and coupler using multilayer polyimide technology,” IEEE Trans. Microw. Theory Tech., 48, (2000), pp. 1482–1486.
    [35] International technology roadmap for semiconductors (ITRS), radio frequency and analog/mixed-signal technologies for wireless communications chapter, pp.2-3, 2006 update.
    [36] H. W. Wu, Y. K. Su, R. Y. Yang, M. H. Weng and Y. D. Lin, “Fabrication of low loss thin film microstrip line on low resistivity silicon for RF applications,” Microelectronics Journal, 38, (2007), pp. 304-309.
    [37] V. V. Levenets, R. E. Amaya, N. G. Tarr, T. J. Smy and J. W. M. Rogers, “Characterization of silver CPWs for applications in silicon MMICs,” IEEE Electron Device Lett., 26, (2005), pp. 357-359.
    [38] I. J. Bahl and K. C. Gupta, “Average power-handling capability of microstrip lines,” IEE Microwaves, Optics and Acoustics, 3, pp. 1-4, 1979.
    [39] I. J. Bahl, “Average power handling capability of multiplayer microstrip lines,” Int. J. RF Microw. CAE, 11, (2001), pp. 385–395.
    [40] W. Y. Yin and X. T. Dong, “Wideband characterization of average power handling capabilities of some microstrip interconnects on polyimide and polyimide/GaAs substrates,” IEEE Trans. Adv. Packag., 28, (2005), pp. 328–336.
    [41] W. Y. Yin, X. T. Dong, J. Mao, L. W. Li, “Average power handling capability of finite-ground thin-film microstrip lines over ultra-wide frequency ranges,” IEEE Microw. Wireless Compon. Lett., 15, (2005), pp. 715–717.
    [42] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., 47, (1999), pp. 2075–2084.
    [43] F. Martín, F. Falcone, J. Bonache, R. Marqués, and M. Sorolla, A new split ring resonator based left handed coplanar waveguide, Appl. Phys. Lett., 83, (2003), pp. 4652–4654.
    [44] F. Falcone, T. Lopetegi, J. D. Baena, R. Marqués, F. Martín, and Mario Sorolla, Effective negative-ε bandgap microstrip lines based on complementary split ring resonators, IEEE Microw. Wireless Compon. Lett., 14, (2004), pp. 280-282.
    [45] F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, R. Marqués, F. Martín, and M. Sorolla, Babinet principle applied to the design of metasurfaces and meta-materials, Phys. Rev. Lett., 93, (2004), pp. 197401-4.
    [46] J. García-García, F. Martín, E. Amat, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, M. A. G. Laso, A. Marcotegui, M. Sorolla, and R. Marqués, Microwave filters with improved bandgap based on sub-wavelength resonators, IEEE Trans. Microw. Theory Tech., 53, (2005), pp. 1997-2006.
    [47] R. Y. Yang, M. H. Weng, H. W. Wu, H. D. Hsueh and M. P. Houng, Dual-mode ring bandpass filter using defected ground structure with a wider bandgap, IEICE Trans. Electron. Paper, vol. E87-C, (2004), pp.2150-2157.
    [48] M. H. Weng and H. W. Wu, Bandgap improvement of a dual-mode ring bandpass filter, Microw. Opt. Tech. Lett., 44, (2005), pp, 247-249.
    [49] R. Ian, P. M. Melinda, and P. K. Kelly, Photonic bandgap structures used as filters in microstrip circuit, IEEE Microw. Guided Wave Lett., 8, (1998), pp. 336-338.
    [50] R. Qiang, Y. Wang, and D. Chen, A novel microstrip bandpass filter with two cascaded PBG structure, Antennas and Propagation Society International Symposium, 2001 IEEE, 2, pp. 510-513.
    [51] X. Ying and A. Alphones, Propagation characteristics of complementary split ring resonator (CSRR) based on EBG structure, Microw. Opt. Tech. Lett., 47, (2005), pp, 409-412.
    [52] H. Y. D. Yang, Characteristics of guide and leaky waves on multilayer thin-film structures with planar material gratings, IEEE Trans. Microw. Theory Tech., 45, (1997), pp. 428-435.
    [53] N. W. Ashcroft and N. D. Mermin, Solid State Physics., New York: Saunders College Publishing, 1976.
    [54] S. G. Mao, S. L. Chen, and C. W. Huang, Effective electromagnetic parameters of novel distributed left-handed microstrip lines, IEEE Trans. Microw. Theory Tech., 35, (2005), pp. 1515-1521.
    [55] J. S. Hong and M. J. Lancaster, Bandpass characteristics of new dual-mode microstrip square loop resonators, IEE Electron. Lett., vol. 31, (1995), pp.891-892.
    [56] M. Matsuo, H. Yabuki, and M. Makimoto, Dual-mode stepped-impedance ring resonator for band-pass filter applications, IEEE Trans. Microw. Theory Tech., 49, (2001), pp. 1235-1240.
    [57] G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, Planar negative refractive index media using L-C loaded transmission lines, IEEE Trans. Microw. Theory Tech., 50, (2002), 2702.
    [58] S. B. Cohn, “Parallel-coupled transmission line resonator filter,” IEEE Trans. Microwave Theory & Tech., (1958), 6, 223-231.
    [59] R. Qiang, Y. Wang, and D. Chen, A novel microstrip bandpass filter with two cascaded PBG structure, IEEE Antennas and Propagation Society International Symposium, (2001), 2, 510-513.
    [60] M. H. Weng and H. W. Wu, Stopband improvement of a dual-mode ring bandpass filter, Microwave & Optical Technology Lett., 44, (2005), 247-249.
    [61] D. Ahn, J. S. Park, C. S. Kim, Y. Qian, and T. Itoh, A design of the low-pass filter using the novel microstrip defected ground structure, IEEE Trans. Microwave Theory Tech., 49, (2001), 86-93.
    [62] G. L. Matthaei, L. Young, E. M. T. Jone, Microwave Filters, Impedance-Maching Networks and Coupling Strustures, New York, McGraw Hill, 1980.
    [63] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, Artech House, 1999.
    [64] M. H. Weng, H. W. Wu, R. Y. Yang, and M. P. Houng, “High Spurious Suppression of the Dual-Mode Patch Bandpass Filter Using Defected Ground Structure,” IEICE Trans. Electronics Lett., E87-C, (2004), pp. 1738-1740.
    [65] S. Wu and B. Razavi, “A 900-MHz/1.8-GHz CMOS receiver for dualband applications,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2178–2185, Dec. 1998.
    [66] J. Ryynänen, K. Kivekäs, J. Jussila, A. Pärssinen, and K. A. I. Halonen, “A dual-band RF front-end for WCDMA and GSM applications,” IEEE J. Solid-State Circuits, 36, (2001), pp. 1198–1204.
    [67] J. T. Kuo, T. H. Yeh, and C. C. Yeh, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microw. Theory Tech., 53, (2005), pp. 1331–1337.
    [68] X. Guan, Z. Ma, P. Cai, Y. Kobayashi, T. Anada, and G. Hagiwara, “Synthesis of dual-band bandpass filters using successive frequency transformations and circuit conversions,” IEEE Microw. Wireless Compon. Lett., 16, (2006), pp. 110–112.
    [69] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., 28, (1980), pp. 1413–1417.
    [70] T. H. Huang, H. J. Chen, C. S. Chang, L. S. Chen, Y. H. Wang, and M. P. Houng, “A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications,” IEEE Microw. Wireless Compon. Lett., 16, (2006), pp. 360–362.
    [71] S. F. Chang, J. L. Chen, and S. C. Chang, “New dual-band bandpass filters with step-impedance resonators in comb and hairpin structures,” in Asia–Pacific Microwave Conf., (2003), pp. 793–796.
    [72] S. Sun and L. Zhu, “Compact dual-band microstrip bandpass filter without external feeds,” IEEE Microw. Wireless Compon. Lett., 15, (2005), pp. 644–646.
    [73] J. S. Hong and M. J. Lancaster, “Development of new microstrip pseudo-interdigital bandpass filters,” IEEE Microw. Guided Wave Lett., 5, (1995), pp. 261-263.
    [74] M. H. Weng, H. W. Wu, and C. Y. Hung, “A compact pseudo-interdigital SIR bandpass filter with improved out-of-band,” Microw. Opt. Tech. Lett., 47, (2005), pp. 462-464.
    [75] C. F. Chen, T. Y. Huang, C. P. Chou, and R. B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., 54, (2006), pp. 1945–1952.

    下載圖示 校內:2008-08-29公開
    校外:2009-08-29公開
    QR CODE