| 研究生: |
吳仁哲 Wu, Jen-Che |
|---|---|
| 論文名稱: |
伺服控制系統之摩擦力與干擾補償研究 A Study on Friction and Disturbance Compensation of Servo Control Systems |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 干擾補償器 、干擾觀測器 、摩擦力補償 、摩擦力模型 、系統鑑別 |
| 外文關鍵詞: | System identification, Disturbance compensator, Disturbance observer, Friction model, Friction compensation |
| 相關次數: | 點閱:182 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ㄧ般而言,摩擦力在精密的伺服運動控制中往往扮演著關鍵的角色,尤其當受控系統進行低速運動或是反轉運動時,常因受到摩擦力的影響而產生滯滑現象,影響運動精度。另一方面,負載轉矩以及系統模型之不確定性,亦為低速下影響控制性能的外在干擾源。因此若能夠補償摩擦力與外部干擾之影響,不但可提升運動控制系統的效能,更能降低控制迴路設計的難易度。有鑒於此,本論文之主要目的在於建立一摩擦力模型,運用前饋補償之方式解決所遭遇的摩擦力問題,並搭配本論文所提出之虛擬模型干擾補償器架構(VPDC),以消除系統其餘之干擾源所造成之影響。最後透過實驗所得之數據,分析探討各種補償架構之間的性能差異,藉以驗證虛擬模型干擾補償器架構確實能夠提供最佳的控制效果。而有鑒於本論文所提方法須以受控體虛擬模型來設計干擾補償器,因此本論文也介紹了兩種不同的系統鑑別方法,並說明兩者均能有效地鑑別出系統參數。
Generally speaking, friction force plays an important role in most of precision motion control systems. In particular, when the system under control undergoes low speed or reversal motions, it will result in stick-slip phenomenon due to friction force. On the other hand, the load torque and modeling uncertainty are also the reasons that can lead to poor performance when system is in low speed. Consequently, the compensations of friction force and disturbance can not only improve the system performance, but also reduce the complexity of control-loop structure design. Hence, in order to deal with the problems due to friction force and external disturbances, the major objective of this thesis is to establish a friction model and employ a virtual plant disturbance compensator (VPDC). Several experiments have been performed to compare the performance of different compensation structure. Experimental results indicate that the proposed virtual plant disturbance compensator provides the best performance. In addition, this thesis also introduces two different identification methods, in which both can be applied to design disturbance compensators.
[1] 郭奕玲,沈慧君, 物理學演義, 凡異出版社, 1996.
[2] D. Karnopp, "Computer simulation of slip-stick friction in mechanical dynamic systems," ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 100-103, 1985.
[3] B. Armstrong, "Friction: Experimental, Modeling and Compensation," in Proceedings of the IEEE International Conference on Robotics and Automation, 1988, pp.1422-1427.
[4] C. Canudas de Wit and V. Seront, "Robust Adaptive Friction Compensation," in Proceedings of the IEEE International Conference on Robotics and Automation, vol.2, 1990, pp. 1383-1388.
[5] C. Canudas de Wit, P. Moel, A. Aubin, B. Broglato and P. Drevet, " Adaptive Friction Compensation in Robot Manipulators: Low-velocities," in Proceedings of the IEEE International Conference on Robotics and Automation, 1989, pp. 1352-1357.
[6] C. Canudas de Wit, H. Olsson, K. J. Åström and P. Lischinsky, " A new Model for Control of Systems with Friction," IEEE Transactions on Automatic Control, vol.40, no. 3, pp. 419-425, 1995.
[7] D. Haessig and B. Friedland, "On the Modeling and Simulation of Friction," ASME Journal of Dynamic System, Measurement, and Control, pp. 113, 1991.
[8] Armstrong-Helouvry, B.,P. Dupont and C. Canudas de Wit “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction,” Automatica, vol. 30, no. 7, pp. 1083-1138, 1994.
[9] M. Gafvert, “Comparisons of Two Dynamic Friction Models,” in Proceedings of the IEEE International Conference on Control Applications, 1997, pp. 386-391.
[10] R. Kelly and J. Liamas, “Determination of Viscous and Coulomb Friction by Using Velocity Responses to Torque Ramp Inputs,” in Proceedings of the IEEE International Conference on Robotics and Automation, 1999, pp. 1740-1745.
[11] C. D. Walrath, “Adaptive Bearing Friction Compensation based on Recent Knowledge of Dynamic Friction,” Automatica, vol. 20, no. 6, pp. 717-727, 1984.
[12] H. S. Lee and M. Tomizuka, "Robust motion controller design for high-accuracy positioning systems," IEEE Transactions on Industrial Electronics, vol. 43, pp. 48-55, 1996.
[13] Du, H. and S. S. Nair “Modeling and Compensation of Low-Velocity Friction with Bounds,” IEEE Transactions on Control Systems Technology, vol. 7, no. 1, pp. 110-121, 1999.
[14] 蔣明潔、徐保羅, “自調式摩擦力補償器設計,” 自動控制研討會會議論文, pp. 516-521, 2000.
[15] 陳國禎, “精密線性馬達定位台之導軌摩擦力補償,” 碩士論文,國立中正大學機械工程系, 八十九學年度.
[16] Tomei, Patrizio “Robust Adaptive Friction Compensation for Tracking Control of Robots,” in Proceedings of the IEEE International Conference on Control Applications, 1999, pp.875-880.
[17] Y. Tan, J. Chang, and H. Tan, “Adaptive nonlinear friction compensation with parametric uncertainties,” in Proceedings of the Amer. Control Conference, Chicago, 2000, pp. 2511-2515.
[18] Chin-I Huang; Li-Chen Fu “Adaptive Approach to Motion Controller of Linear Induction Motor with Friction Compensation,” IEEE/ASME Transactions on Mechatronics, vol.12, no.4, pp. 480 – 490, Aug. 2007.
[19] Y. S. Tarng and H. E. Cheng, “An Investigation of Stick-Slip Friction on the Contouring Accuracy of CNC Machine Tools,” Int. J. Mach. Tools. Manuf., vol. 35, no. 4, pp. 565-576, 1995.
[20] T. Umeno and Y. Hori, "Robust speed control of DC servomotors using modern two degrees-of-freedom controller design," IEEE Transactions on Industrial Electronics, vol. 38, pp. 363-368, 1991.
[21] S. Endo, H. Kobayashi, C. J. Kempf, S. Kobayashi, M. Tomizuka, and Y. Hori, "Robust digital tracking controller design for high-speed positioning systems," Control Engineering Practice, vol. 4, pp. 527-536, 1996.
[22] E. C. Tseng, M. Y. Cheng, and M. C. Tsai, "Design of a PI-type torque observer for detecting abnormal load," in Proceedings of the 1998 International Conference on Mechatronics Technology , 1998, pp. 147-152.
[23] M. C. Tsai, E. C. Tseng, and M. Y. Cheng, "Design of a torque observer for detecting abnormal load," Control Engineering Practice, vol. 8, pp. 259-269, 2000.
[24] 劉叡明, “伺服馬達低轉速控制改善之研究,” 碩士論文, 國立成功大學電機工程學系, 九十七學年度.
[25] C. T. Johnson and R. D. Lorenz, "Experimental identification of friction and its compensation in precise, position controlled mechanisms," IEEE Transactions on Industry Applications, vol. 28, pp. 1392-1398, 1992.
[26] P.Dahl. "A Solid Friction Model." Technical Report, The Aerospace Corporation, EI Segundo, CA, 1968.
[27] 林銘湧, “精密伺服控制系統之摩擦力分析及補償研究,” 碩士論文, 逢甲大學自動控制工程學系, 九十ㄧ學年度.
[28] T. Instruments, TMS320 Float-Point DSP Optimizing C Compiler, 1991.
[29] T. Instruments, TMS320C3x C Source Debugger User's Guide, 1991.
[30] T. Instruments, TMS320C3x User's Guide, 1992.
[31] 惠汝生, 自動量測系統-LabView, 全華科技圖書, 2002.
[32] 謝勝治, 圖控式程式語言-LabView, 全華科技圖書, 2002.
[33] 張智星, MATLAB程式設計與應用, 2002.
[34] 工研院, PMC32 韌體開發技術手冊 Ver2.0, 2002.
[35] 工研院, EPCIO-601-1 使用手冊, 2002.
[36] Panasonic, AC伺服馬達驅動器 MINAS-A 系列操作說明書.