簡易檢索 / 詳目顯示

研究生: 王啓睿
WANG, CI-RUEI
論文名稱: 自抗擾控制技術於捲繞系統之應用與比較
Application and Comparison of Active Disturbance Rejection Control in Roll to Roll System
指導教授: 吳謂勝
Wu, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 87
中文關鍵詞: 捲繞式製程自抗擾控制擴張狀態觀測器總擾動量估測改良非線性狀態回授控制器
外文關鍵詞: Roll to roll system, Active Disturbance Rejection Control, Extended state observer, Disturbance estimation, Improved nonlinear state feedback controller
相關次數: 點閱:122下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在捲繞製程中,影響加工品質關鍵因素之一是穩定之軟性基材張力,因此發展捲繞製程設備時,設計良好之張力控制及傳輸線速度控制系統極為重要。捲繞系統在運作過程中,受到之擾動量包含難以鑑別之系統參數所造成之內部擾動以及在運轉過程中無法預期之外部擾動。欲改善捲繞系統之控制性能,本論文所採用之自抗擾控制架構係一種能夠主動消除外擾,將複雜的控制問題藉由尋找輸入、輸出的關係,來估測系統的總擾動量進而即時補償之控制架構。本論文使用改良非線性函數來構建改良非線性狀態回授控制器以提升自抗擾控制架構於捲繞系統性能改善之能力;本論文將自抗擾控制架構實現於一捲繞系統上,分別對放捲端以及收捲端伺服馬達進行線速度控制以及張力控制。本論文使用之自抗擾控制架構採用了線性以及非線性擴張狀態觀測器來分別估測控制器所需之系統狀態變數值以及捲繞系統在運作時所遭遇之總擾動量;由於線性與非線性擴張狀態觀測器之設計難度並不相同,進一步透過實驗來闡明兩者控制性能,實驗結果顯示線性與非線性擴張狀態觀測器兩者對於總擾動量之確實有抑制能力,皆利於捲繞製程使用。

    In the roll to roll system, the stable tension on the material is the key factor influencing the processing quality. Therefore, the well-designed tension control and the line-speed control system are extremely important in developing the winding-type process equipment. During the operation of the winding system, the total disturbances including the internal disturbances caused by the difficulty of identifying system parameters and the external disturbances that could not be expected in processing can deteriorate system performance. The thesis uses the method based on the Active Disturbance Rejection Control (ADRC), which is a kind of control structure to actively eliminate the total disturbances and solve the complex control problem by finding the relationship between system output and input. Moreover, the nonlinear function is used to construct an improved nonlinear state feedback controller to enhance the control performance of the ADRC for the roll to roll system. We implement the ADRC in a roll to roll system and use the control structure to do the line-speed control and tension control. By using two different types of extended state observer (ESO), we can reasonably estimate the state required for control and the total disturbance. Because the difficulty to design the different type of extended state observer is not the same, we implement both of them in our roll to roll equipment. The experimental results show that both of them have the ability to suppress the total disturbances, which is beneficial to the roll to roll system. In other words, it can save the cost of building the control system and easily extend to large-scale winding equipment.

    目錄 中文摘要 II EXTENDED ABSTRACT III 誌謝 XVI 目錄 XVII 表目錄 XX 圖目錄 XXI 第一章 研究背景與動機 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 文獻回顧 2 1.4 論文架構 5 第二章 捲繞系統簡介 7 2.1 捲繞系統基本工作原理 7 2.2 張力感測元件 8 2.2.1 跳動臂 9 2.2.2 荷重元 9 2.3 伺服馬達 10 2.3.1 馬達數學模型 10 2.3.2 伺服迴路架構 12 2.4 摩擦力模型 13 2.5 捲繞系統動態數學模型 14 2.5.1 收捲端與放捲端半徑變化動態方程式 16 2.5.2 收捲端與放捲端慣量變化動態方程式 16 2.5.3 收捲端與放捲端馬達動態方程式 17 2.5.4 捲帶張力區動態方程式 18 第三章 自抗擾控制架構 21 3.1 追蹤微分器(Tracking Differentiator) 22 3.2 非線性狀態回授控制器(Nonlinear Error State Feedback) 26 3.2.1 非線性函數fal 27 3.2.2 非線性函數faln 28 3.3 擴張狀態觀測器(Extended State Observer) 29 3.3.1 非線性擴張狀態觀測器 31 3.3.2 線性擴張狀態觀測器 33 第四章 捲繞系統控制架構 36 4.1 參考訊號整形 36 4.1.1 放捲端追蹤微分器設計 36 4.1.2 收捲端追蹤微分器設計 38 4.2 回授控制器設計 40 4.2.1 放捲端改良非線性狀態回授控制器 41 4.2.2 收捲端改良非線性狀態回授控制器 42 4.3 擴張狀態觀測器設計 44 4.3.1 放捲端擴張狀態觀測器 44 4.3.2 收捲端擴張狀態觀測器 47 4.4 捲繞系統控制架構 49 4.4.1 放捲端控制架構 50 4.4.2 收捲端控制架構 52 第五章 實驗設備與結果 53 5.1 實驗架構 53 5.1.1 硬體設備 55 5.1.2 軟體設備 60 5.2 實驗一:馬達速度控制實驗 60 5.2.1 定干擾轉矩下定速控制實驗 61 5.2.2 弦波干擾轉矩下定速控制實驗 64 5.3 實驗二:高線速捲繞系統定張力控制實驗 66 5.3.1 應用線性自抗擾控制架構 67 5.3.2 應用非線性自抗擾控制架構 69 5.3.3 實驗小結 71 5.4 實驗三:低線速捲繞系統定張力控制實驗 72 5.4.1 應用線性自抗擾控制架構 73 5.4.2 應用非線性自抗擾控制架構 75 5.4.3 實驗小結 78 第六章 結論與建議 79 6.1 結論 79 6.2 未來展望及建議 80 參考文獻 81

    [1] 李昌周、張耀仁、劉如豐,“R2R技術於軟電之應用機會與挑戰”,機械工業雜誌,315期 2009。
    [2] 彭棨俊,應用模糊滑動模式控制於PET膜捲取系統之張力控制,碩士論文,國立台灣科技大學高分子工程研究所,2005。
    [3] 賴樹德,“鋼捲張力開迴路控制系統”,機械月刊,第二十七卷,第四期,頁256-264,2001。
    [4] 蔡明琪、陳寬益、林穀欽,“高速捲繞系統之定張力控制”,機械月刊,第二十六期,頁 226-236,2000。
    [5] 蔡智仁、柯志諭、翁永進、翁永春,“R2R製程基板即時導正技術”,機械工業雜誌,307期 2008。
    [6] 黃柏堯,基於 控制理論之干擾補償架構於無張力感測器之捲繞控制系統研究,碩士論文,國立成功大學電機學系,2012。
    [7] J. Han, “From PID to Active Disturbance Rejection Control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900-906, Mar. 2009.
    [8] Y. Hou, Z. Gao, F. Jiang, and B. T. Boulter, “Active Disturbance Rejection Control for Web Tension Regulation," in Proceeding of the IEEE Conference on Decision and Control, vol. 5, Dec. 2001, pp. 4974 – 4979.
    [9] S. Liu and X. Mei, “Tension Controller Design for Unwinding Tension System Based on Active Disturbance Rejection Control,” in Proceeding of the IEEE Conference on Decision and Mechatronics and Automation, Chengdu, China, Aug. 2012, pp. 1798-1804.
    [10] K. Okada and T. Sakamoto, “An Adaptive Fuzzy Control for Web Tension Control System,” in Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, Aachen, Germany, 1998, pp. 1762-1767.
    [11] S. Jee, S. Kim and K. H. Shin, “Adaptive Fuzzy Control of Tension Variations Due to the Eccentric Unwinding Roll in Multi-Span Web Transport Systems,” ASME Dynamic System and Control Division, vol. 67, pp. 877-882, 1999.
    [12] F. Janabi-Sharifi and J. Liu, ”Design a Self-Adaptive Fuzzy Tension Controller for Tandem Rolling,” IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1428-1438, Oct. 2005.
    [13] N. Hoang and S. Lee, “Application of a Fuzzy Controller for the Lateral Control in Roll-to-Roll Printed Electronics,” International Journal of Precision Engineering and Manufacturing, vol. 13, no. 9, pp. 1525-1532, Sep. 2012.
    [14] F. L. Luo and C. Wen, “Multiple-page Mapping Artificial Neural Network Algorithm Used for Constant Tension Control,” Expert Systems with Applications, vol. 13, no. 4, pp. 307-315, 1997.
    [15] C. Wang, Y. Wang, R. Yang, and H. Lu, ”Research on Precision Tension Control System Based on Neural Network,” IEEE Transactions on Industrial Electronics, vol. 51, no. 2, pp. 381-386, Apr. 2004.
    [16] F. L. Luo, and C. Wen, “Multi-page Mapping Artificial Network Algorithm Used for Constant Tension Control,” Expert System with Applications, vol. 13, no. 4, pp. 307-315, Nov. 1997.
    [17] C. Lee, W. Lee, W. Kim, and K. H. Shin, “A Feed-forward Tension Control in Drying Section of Roll to Roll e-Printing Systems,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 11865-11870, Jul. 2008.
    [18] Z. Chen, Y. Zheng, M. Zhou, D. S. Wong, and L. Chen, “Model-based Feedforward Register Control of Roll-to-Roll Web Printing Systems,” Control Engineering Practice, vol. 51, pp. 58-68, 2016.
    [19] Z. Chen, J. He, Y. Zheng, T. Song, and Z. Deng, “An Optimized Feedforward Decoupling PD Register Control Method of Roll-to-Roll Web Printing Systems,” IEEE Transactions on Automation Science and Engineering, vol. 13, no. 1, pp. 274-283, Jan. 2016.
    [20] K. Shin and S. Kwon, “The Effect of Tension on The Lateral Dynamics and Control of a Moving Web,” IEEE Transactions on Industry Application, vol. 43, no. 2, pp. 403-411, Mar. 2007.
    [21] V. Gassmann and D. Knittel, “Robust PI–LPV Tension Control with Elasticity Observer for Roll–to–Roll Systems,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 8639-8644, Aug. 2011.
    [22] H. Koc, D. Knittel, M. D. Mathelin, and G. Abba, “Robust Gain-scheduled Control of Winding Systems,” in Proceedings of the IEEE Conference on Decision and Control, Sidney, Australia, Dec. 2000.
    [23] P. R. Pagilla, E. O. King, L.H. Dreinhoefer, and S.S. Garimella, “Robust Observer-Based Control of an Aluminum Strip Processing Line,” IEEE Transactions on Industry Applications, vol. 36, pp. 865-870, May 2000.
    [24] M. D. Baumgart and L. Y. Pao, “Robust Control of Nonlinear Tape Transport Systems With and Without Tension Sensors,” Journal of Dynamic Systems, Measurement, and Control, vol. 129, no. 1, pp. 41, Jun. 2007.
    [25] V. Gassmann, D. Knittel, P. R. Pagilla, and M. Bueno, “Fixed-Order Tension Control in the Unwinding Section of a Web Handling,” IEEE Transactions on Control Systems Technology, vol. 20, no. 1, pp. 173-180, Jan. 2012.
    [26] H. Hou, Z. Wong, X. Nian, and J. Shang, “Robust Decentralized Control of Web-Winding Systems Without Tension Sensor,” in 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 2015, pp. 8850-8854.
    [27] H. Hou, X. Nian, H. Xiong, and Z. Peng, “Robust Decentralized Coordinated Control of a Multimotor Web-Winding System,” IEEE Transactions on Control Systems Technology, vol. 24, no. 4, pp. 1495-1503, Jul. 2016.
    [28] Y. Guo, D. J. Hill, and Y. Wang, “Nonlinear Decentralized Control of Large-scale Power Systems,” Automatica, vol. 36, no. 9, pp. 1275-1289, 2000.
    [29] Z. P. Jiang, “Decentralized and Adaptive Nonlinear Tracking of Large-scale Systems via Output Feedback,” IEEE Transactions on Automation Control, vol. 45, pp. 2122-2128, Nov. 2000.
    [30] T. Patri,W. Wolfermann and D. Schroder, “The Usage of Decentralized Observer in Continuous Moving Webs,” IEEE Control Systems Magazine, pp. 147-154, Feb. 2001.
    [31] Z. H. Guana, G. Chen, X. H. Yu, and Y. Qian, “Robust Decentralized Stabilization for a Class of Large-scale Time-delay Uncertain Impulsive Dynamical Systems,” Automatica, vol. 38, pp. 2075-2084, Dec. 2002.
    [32] B. M. Mirkin and P. O. Gutman, “Decentralized Output Feedback Control of Linear State Delay Systems,” IEEE Transactions on Automatic Control, vol. 48, pp. 1613-1619, Sep. 2003.
    [33] P. R. Pagilla and Y. Zhu, “A Decentralized Output Feedback Controller for a Class of Large-scale Interconnected Nonlinear Systems,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 127, no. 1, pp. 167-172, Apr. 2005.
    [34] P. R. Pagilla and N. Siraskar, “Robust Decentralized Controllers for Large-scale Interconnected Systems: Applications to Web Handling Systems," Current Trends in nonlinear Systems and Control, pp. 387-406, Dec. 2005.
    [35] P. R. Pagilla, N. Siraskar, and R. V. Dwivedula, “Decentralized Control of Web Processing Lines,” in Proceedings of the IEEE Conference on Control Applications, Toronto, Canada, 2005, pp. 940-945.
    [36] P. R. Pagilla, R. V. Dwivedula, and N. B. Siraskar, “A Decentralized Model Reference Adaptive Controller for Large-scale Systems,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 2, Apr. 2007.
    [37] A. Belatreche, D. Knittel, and O. Eric, “Robust Decentralized Control Strategies for Large-scale Web Handling Systems,” Control Engineering Practice, vol. 16, no. 6, pp. 736-750, Jul. 2006.
    [38] P. Lin and M. S. Lan, “Effects of PID Gains for Controller with Dancer Mechanism on Web Tension,” in Proceedings of the Second International Conference on Web Handling, Stillwater, Oklahoma, 1993, pp. 66-76.
    [39] W. Wolfermann and D. Schroder, “Application of Decoupling and State Space Control in Proceeding Machines with Continuous Moving Webs,” in Proceedings of the IFAC 10th Triennial World Congress, Munich, Germany, 1987, pp. 103-108.
    [40] A. Kadik and W. Wang, “Adaptive Force Control of in Web Handling Systems,” Intelligent Control and Automation, vol. 3, no. 4, pp. 329-336, Jul. 2012.
    [41] N. Abjadi, J. Soltani, J. Askari, and G. A. Markadeh, “Nonlinear Sliding-mode Control of a Multi-motor Web-winding System without Tension Sensor,” IET Control Theory & Applications, vol. 3, no. 4, pp. 419-427, Apr. 2008.
    [42] D. E. Chang, J. Levine, J. Jo, and K. Choi, “Control of Roll-to-Roll Web Systems via Differential Flatness and Dynamic Feedback Linearization,” IEEE Transactions on Control Systems Technology, vol. 21, no. 4, pp. 1309-1317, Jul. 2013.
    [43] P. R. Raul, S. G. Manyam, P. R. Pagilla, and S. Darbha, “Output Regulation of Nonlinear Systems With Application to Roll-to-Roll Manufacturing Systems,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 3 , pp. 1089-1098, Jun. 2015.
    [44] A. Seshadri, P. R. Pagilla, “Modeling and Control of a Rotating Turret Winder Used in Roll-to-roll Manufacturing,” Control Engineering Practice, vol. 41, pp. 164-175, 2015.
    [45] P. Zhao, Y. Shi, and J. Huang, “Dynamics Modeling and Deviation Control of the Composites Winding System,” Mechatronics, vol. 48, pp. 12-29, 2017.
    [46] A. F. Lynch, Nonlinear Observer Synthesis and Error Linearization. Ottawa: National Library of Canada, Canada.
    [47] S. H. Song and S. K. Sul, “A New Tension Controller for Continuous Strip Processing Line,” in Proceedings of the IEEE Industrial Application Conference, 1998, vol. 3, pp. 2225-2230.
    [48] M. A. Valenzuela, J. M. Bentley, and R. D. Lorenz, ”Sensorless Tension Control in Paper Machines,” in Proceedings of the Conference Record of the 2002 Annual Pulp and Paper Industry Technical Conference, Toronto, Canada, 2002, pp. 44-53.
    [49] A. F. Lynch, S. A. Bortoff, and K. Robenack, “Nonlinear Tension Observers for Web Machines,” Automatica, vol. 40, pp. 1517-1524, Sep. 2004.
    [50] K. C. Lin, M. C. Tsai, and Z. W. Wang, “Observer-based Web Tension Control with Inertia Compensation,” in Proceedings of the International Conference Mechatronic Technology, Taiwan, R.O.C., 1998, pp. 355-360.
    [51] K. C. Lin, “Observer-based Tension Feedback Control with Friction, and Inertia Compensation,” IEEE Transaction on Control Systems Technology, vol. 11, no. 1, pp. 109-118, Jan. 2003.
    [52] J. Han and W. Wang, “Nonlinear Tracking Differentiator,” Control and Decision, vol. 14, no. 2, pp. 177-183, 1994 (In Chinese).
    [53] J. Han, “Nonlinear State Error Feedback Control,” Control and Decision, vol. 10, no. 3, pp. 221-225, 1995 (In Chinese).
    [54] J. Han, “A Class of Extended State Observers for Uncertain Systems,” Control and Decision, vol. 10, no. 1, pp. 85-88, 1995 (In Chinese).
    [55] J. Han, “Auto-disturbance Rejection Control and Its Applications,” Control and Decision, vol. 13, no. 1, pp. 19-23, 1998 (In Chinese).
    [56] Z. Gao, “Scaling and Parameterization Based Controller Tuning,” in Proceeding of the 2003 American Control Conference, vol. 6, June 2003, pp. 4989-4996.
    [57] S. Zhao and Z. Gao, “An Active Disturbance Rejection Based Approach to Vibration Suppression in Two-Inertia Systems,” Asian Journal of Control, vol. 15, no. 2, pp. 350-362, Jul. 2012.
    [58] Q. Zheng and Z. Gao, “Active Disturbance Rejection Control: Between the Formulation in time and the Understanding in Frequency,” Control Theory and Technology, vol. 14, no.3, pp. 250-259, Aug. 2016.
    [59] C. Wang, Y. Xia, M. Fu, and Z. Zhu, “Application of Active Disturbance Rejection Control in Tank Gun Control System,” Journal of the Franklin Institute, vol. 351, no. 4, pp. 2299-2314, Apr. 2014.
    [60] H. Yang, L. Cheng, Y. Xia and Y. Yuan, “Active Disturbance Rejection Attitude Control for a Dual Closed-Loop Quadrotor under Gust Wind,” IEEE Transactions on Control Systems Technology, pp. 1-6, Jun. 2017.
    [61] H. Yang, Y. Yu, J. Qiu, and C. Hua, “Active Disturbance Rejection Tracking Control for a Nonlinear Pneumatic Muscle System,” International Journal of Control, Automation and Systems, vol. 15, no. 5, pp. 2376-2384, Oct. 2017.
    [62] W. Zhou, and Z. Gao, “An Active Disturbance Rejection Approach to Tension and Velocity Regulations in Web Processing Lines,” in Proceedings of the IEEE Multi-conference on Systems and Control, Singapore, Singapore, Oct. 2007, pp. 842-848.
    [63] N. Ebler, R. Arnason, G. Michaelis, and N. Dsa, “Tension Control: Dancer Rolls or Load Cells,” in Proceedings of the Conference Record on Pulp and Paper Industry Technical Conference, 1992.
    [64] F. Ltd, Fanuc AC Servomotor Alpha Series, Parameter Manual, 1994.
    [65] Z. W. Chen, Z.Z. Zhang, and Y. J. Cao, “ Function Improvement of ADRC and Its Application in Quadrotor Aircraft Attitude Control,” Control and Decision, 2017 (In Chinese).
    [66] T. Wen and C. Fu, “Linear Active Disturbance-Rejection Control: Analysis and Tuning via IMC,” IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2350-2359, Apr. 2016.
    [67] B. Guo and Z. Zhao, “On the Convergence of an Extended State Observer for Nonlinear Systems with Uncertainty,” Systems & Control Letters, vol. 60, no. 6, pp. 420-430, 2011.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE