簡易檢索 / 詳目顯示

研究生: 林琦璋
Lin, Chi-Chang
論文名稱: 應用於WLAN以及超寬頻UWB通訊系統之平面印刷式天線的設計研究
Research of Planar Printed Antennas for WLAN and UWB Communication Systems
指導教授: 甘堯江
Kan, Yao-Chiang
莊惠如
Chuang, Huey-Ru
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 112
外文關鍵詞: WLAN, UWB, Planar triangular monopole antenna (PTMA), Alford loop, Horizontally polarized, Ridged ground, Omni-directional, Printed inverted-F antenna (IFA), Sleeve monopole
相關次數: 點閱:89下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis presents the research of planar printed antennas for WLAN and UWB communication systems. At first the design simulation, fabrication, and measurement of a 2.4-GHz horizontally polarized omnidirectional planar printed antenna for WLAN applications is presented. The antenna adopts the printed Alford-loop-type structure. The three-dimensional (3-D) EM simulator HFSS is used for design simulation. The designed antenna is fabricated on an FR-4 printed- circuit-board substrate. A comparison with the popular printed inverted-F antenna (PIFA) has been conducted. The study of the antenna printed on a simulated PCMCIA card and that inserted inside a laptop PC are also conducted. The HFSS model of a laptop PC housing, consisting of the display, the screen, and the metallic box with the keyboard, is constructed. Secondly, a planar triangular monopole antenna (PTMA) is presented for UWB communication. A printed PTMA has been realized by using the FR-4 printed circuit board substrate. The measured voltage standing wave ratio is less than 3 from 4 to 10 GHz. In the UWB communication frequency range, the measured phase distribution of the input impedance is quite linear and the H-plane patterns are almost omni-directional. Then, a novel technique to enhance the bandwidth of the conventional PTMA is presented. With two symmetrical corrugations extended from the flat ground plane, a significant improvement on the impedance bandwidth up to about 4:1 can be achieved. Measured VSWR of the printed PTMA with the ridged ground plane is less than 2 from 3 to 12 GHz. The measured antenna patterns also show the monopole-type omni-directional radiation patterns from 3 to about 10 GHz.

    Chapter 1 Introduction 1 1-1. General introduction 1 1-2. Outline of thesis 3 Chapter 2 A Horizontally Polarized Omni-Directional Printed Antenna for WLAN Applications 5 2-1. Introduction 5 2-2. Printed Alford-loop-structure antenna 7 2-2-1. Antenna design 7 2-2-2. Comparisons with the printed IFA 13 2-3. Antenna printed on a simulated PCMCIA card 13 2-3-1. Effects of the simulated PCMCIA card 14 2-3-2. Effect of the antenna location on the simulated PCMCIA card 16 2-4. Antenna printed on simulated PCMCIA card inserted to a laptop PC 17 2-5. Summary 20 Chapter 3 Planar Monopole Antennas and Triangular Monopole Antennas for UWB Communication 21 3-1. Introduction of planar monopole antennas 21 3-1-1. Square monopole antenna 22 3-1-2. Enhancement on impedance bandwidth of square monopole antenna 23 3-1-3. Circular monopole antenna (CMA) 25 3-2. Planar triangular monopole antenna (PTMA) 26 3-2-1. Introduction 26 3-2-2. Apex-fed PTMA 27 3-2-3. Bottom-fed PTMA 33 3-3. A PTMA for UWB applications 40 3-3-1. Introduction 40 3-3-2. Antenna design 41 3-3-3. Radiated power density spectrum (PDS) 46 3-3-4. Transfer function 48 3-4. Summary 50 Chapter 4 Bandwidth Enhancement Techniques for UWB Planar Triangular Monopole Antenna (PTMA) 53 4-1. Overview 53 4-2. Bottom-fed PTMA with offset feeding 57 4-2-1. Antenna design 57 4-2-2. Experimental results and discussion 59 4-3. Side-fed PTMA with offset feeding 64 4-3-1. Antenna design 64 4-3-2. Experimental results and discussion 66 4-4. Apex-fed PTMA with sleeves 71 4-4-1. Antenna design 71 4-4-2. Experimental results and discussion 73 4-5. Apex-fed PTMA with ridged ground 77 4-5-1. Antenna design 78 4-5-2. Experimental measurement results 84 4-6. Summary 91 Chapter 5 Conclusion 93 Reference 95 Appendix A Introduction of Planar Inverted-F Antenna (PIFA) [16]-[20] 101 A-1. Overview 101 A-2. Printed PIFA 103 Appendix B Performance Comparison of Reported Planar Printed UWB Antennas 107 B-1. UWB Printed Monopole Antennas 107 B-2. Comparisons 111

    [1]J. T. Bernhard, “Analysis of integrated antenna positions on a laptop computer for mo-bile data communication,” in Proc. IEEE AP-S. Int. Symp. Dig., Montreal, Jul. 1997, pp. 2210-2213.
    [2]J. M. Johnson and Y. Rahmat-Sammi, “Wideband tab monopole antenna array for wire-less adaptive and mobile information systems application,” in Proc. IEEE AP-S Int. Symp. Dig., vol. 1, Jul. 1996, pp. 718-721.
    [3]M. Ali, M. Okoniewski, M. A. Stuchly, and S. S. Stuchly, “Dual-frequency strip-sleeve monopole for laptop computers,” IEEE Trans. Antennas Propagat., vol. 47, no. 2, pp. 317-323, Feb. 1999.
    [4]C. Soras, M. Karaboikis, G. Tsachtsiris, and V. Makios, “Analysis and design of an in-verted-F antenna printed on a PCMCIA card for the 2.4 GHz ISM band,” IEEE Anten-nas Propagat. Mag., vol. 44, no. 1, pp. 37-44, Feb. 2002.
    [5]M. Ali, and G.J. Hayes, “Analysis of Integrated Inverted-F Antennas for Bluetooth Ap-plications,” in Proc. IEEE Antennas and Propagation for Wireless Communication Conf., Waltham, MA, Nov. 2000, pp. 21-24.
    [6]M. Karaboikis, C. Soras, G. Tsachtsiris, and V. Makios, “Compact dual-printed in-verted-F antenna diversity systems for portable wireless devices,” IEEE Antennas Wire-less Propagat. Lett., vol. 3, pp. 9-14, 2004.
    [7]G. P. Karakoussis, A. I. Kostaridis, C. G. Biniaris, and D. I. Kaklamani, “A dual-band inverted-F antenna printed on a PC card for the ISM and UNNI bands,” in Proc. IEEE Wireless Communications and Networking Conf. (WCNC), vol. 1, Mar. 2003, pp. 88-92.
    [8]H. Matsuoka, I. Seto, T. Sekiguchi, H. Yoshida, A. Tsujimura, and M. Namekata, “De-velopment of a PC card using planar antennas for wireless LAN on 2.4/5 GHz bands,” in Proc. IEEE Wireless Communications and Networking Conf. (WCNC), vol.1, Mar. 2005, pp.573-577.
    [9]A. Alford and A. G. Kandoian, “Ultra-high frequency loop antenna,” Trans. AIEE, vol. 59, pp. 843-848, 1940.
    [10]H.-R. Chuang et al., “Omni-directional horizontally polarized Alford loop strip an-tenna,” US patent 5,767,809, Jun. 16, 1998.
    [11]J. R. Verbiest and G. A. Vandenbosch, “Small-size planar triangular monopole antenna for UWB WBAN applications,” Electron. Lett., vol. 42, no.10, pp. 566-567, May 2006
    [12]C.-C. Lin, Y.-C. Kan, L.-C. Kuo, and H.-R. Chuang, “A planar triangular monopole antenna for UWB communication,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 624-626, Oct. 2005.
    [13]W.-C. Liu and P.-C. Kao, “CPW-fed triangular monopole antenna for ultra-wideband operation,” Microwave Opt. Technol. Lett., vol. 46, no.6, pp. 580-582, Dec. 2005.
    [14]D. Chizhik, J. Ling, and R. A. Valenzuela, “The Effect of Electric Field Polarization on Indoor Propagation,” in Proc. IEEE Universal Personal Communications Int. Conf., vol. 1, Oct. 1998, pp. 459- 462.
    [15]H.-R. Chuang and L.-C. Kuo, “3-D FDTD design analysis of a 2.4 GHz polarization-diversity printed dipole-antenna with integrated balun and polarization-switching cir-cuit for WLAN and wireless communication applications,” IEEE Trans. Microwave Theory and Tech., vol. 51, no. 2, pp. 374-381, Feb. 2003.
    [16]K. Fujimoto, A. Henderson, K. Hirasawa, and J. R. James, Small Antennas, Research Studies Press, England, 1987.
    [17]N. P. Cummings, “Low profile integrated GPS and cellular antenna,” Master thesis, Virginia Polytechnic Institute and state University, 2001.
    [18]R. W. P. King, J. C. W. Harrison, and D. H. Denton, "Transmission line missile anten-nas," IRE Trans. Antennas Propagat., vol. 8, no. 1, pp. 88-90, 1960.
    [19]A. T. Gobien, “Investigation of low profile antenna designs for use in hand-held ra-dios,” Master thesis, Virginia Polytechnic Institute and state University, 1997.
    [20]K. Hirasawa and M. Haneishi, Analysis, design and measurement of small and low-profile antennas, Artech. House, Boston, 1992.
    [21]S. Honda, M. Ito, H. Seki, and Y. Jinbo, “On a broadband disk monopole antenna,” Technical Report of Television Society Japan ROFT91-55 (1991.10), 1991.
    [22]S. Honda, M. Ito, H. Seki, and Y. Jinbo, “A disk monopole antenna with 1:8 impedance bandwidth and omnidirectional radiation pattern,” International Symposium on Anten-nas and Propagation, Sapporo, Japan, 1992, pp. 1145-1148.
    [23]P. P. Hammoud and F. Colomel, “Matching the input impedance of a broadband disc monopole,” Electron. Lett., vol. 29, pp. 406-407, Feb. 1993.
    [24]N. P. Agrawall, G. Kumar, and K. P. Ray, “Wide-band planar monopole antennas,” IEEE Trans. Antennas Propagat., vol. 46, pp. 294-295, Feb. 1998.
    [25]E. Hallen, “Theoretical investigations into the transmitting and receiving qualities of Antennae,” Nova Acta Regiae Soc. Sri. Upsaliensis, Sec. IV, no. 4, 1938, pp. 1-44.
    [26]M. J. Ammann, “Square planar monopole antenna,” in Inst. Elect. Eng. NCAP, York, U.K., 1999, IEE Publication, no. 461, pp. 37-40.
    [27]J. Liang, L. Guo, C. C. Chiau, X. Chen, “CPW-fed circular disc monopole antenna for UWB applications,” in IEEE Int. Wkshp. Antenna Technol: Small antennas and novel metamaterials, 2005, pp. 505-508.
    [28]M. J. Ammann, “Impedance bandwidth of the square planar monopole,” Microwave Opt. Technol. Lett., vol. 24, no. 3, pp. 185-187, Feb. 2000
    [29]N. P. Agrawall, G. Kumar, and K. P. Ray, “Wide-band planar monopole antennas,” IEEE Trans. Antennas Propagat., vol. 46, pp. 294-295, Feb.1998.
    [30]J. A. Evans and M. J. Ammann, “Planar trapezoidal and pentagonal monopoles with impedance bandwidths in excess of 10:1,” in IEEE Antennas Propag. Soc. Int. Symp. Dig., 1999, pp. 1558-1561.
    [31]Z. N. Chen and Y. W. M. Chia, “Impedance characteristics of trapezoidal planar mono-pole antennas,” Microwave Opt. Technol. Lett., vol. 27, pp. 120-122, Oct. 2000.
    [32]M. J. Ammann and Z. N. Chen, “Wideband monopole antennas for multi-band wireless systems,” IEEE Antennas Propagat. Mag., vol. 45, no. 2, pp. 146-150, Apr. 2003.
    [33]R. G. FitzGerrell, “Monopole impedance and gain measurement on finite ground planes,” IEEE Trans. Antennas Propagat., vol. 36, no. 3, pp. 431-438, Mar. 1988.
    [34]A. S. Meier and W. P. Summers, “Measured impedance of vertical antennas over finite ground plane,” Proc. IEEE, vol. 37, pp. 607-616, June 1949.
    [35]J. H. Richmond, “Monopole antenna on circular disk,” IEEE Trans. Antennas Propa-gat., vol. 32, no. 12, pp. 1281-1287, Dec. 1984.
    [36]S.-W. Su, K.-L. Wong, Y.-T. Cheng, and W.-S. Chen, “Finite-ground-plane effects on the ultra-wideband planar monopole antenna,” Microwave Opt. Technol. Lett., vol. 43, pp. 535-537, Dec. 2004.
    [37]M. J. Ammann, “The pentagonal planar monopole for digital mobile terminals: band-width considerations and modeling,” in Proc. 11th ICAP, UMIST, vol. 1, 2001, pp. 82-85.
    [38]M. J. Ammann, “Control of the impedance bandwidth of wideband planar monopole antennas using a beveling technique,” Microwave Opt. Technol. Lett., vol. 30, no. 4, pp. 229-232, Aug. 2001.
    [39]J. Qui, Z. Du, J. Lu, and K. Gong, “ A case study to improve the impedance bandwidth of a planar monopole,” Microwave Opt. Technol. Lett., vol. 45, no. 2, pp. 124-126, Apr. 2004.
    [40]X. N. Qiu, H. M. Chiu, and A. S. Mohan, “Symmetrically beveled ultra-wideband pla-nar monopole antenna,” in IEEE Antennas Propag. Soc. Int. Symp. Dig., 2005, pp.504-507.
    [41]M. J. Ammann, “Wideband antenna for mobile wireless terminals,” Microwave Opt. Technol. Lett., vol. 26, no. 6, pp. 360-362, Sep. 2000.
    [42]M. J. Ammann and Z. N. Chen, “A wide-band shorted planar monopole with bevel,” IEEE Trans. Antennas Propagat., vol. 51, pp. 901-903, Apr. 2003.
    [43]P. V. Anob, K. P. Ray, and G. Kumar, “Wideband orthogonal square monopole anten-nas with semi-circular base,” in IEEE Antennas Propag. Soc. Int. Symp. Dig., Boston, MA, 2001, pp. 294–297.
    [44]M. J. Ammann and Z. N. Chen, “An asymmetrical feed arrangement for improved im-pedance bandwidth of planar monopole antennas,” Microwave Opt. Technol. Lett., vol. 40, no. 2, pp. 156-158, Jan. 2004.
    [45]S.-Y. Suh, W. L. Stutzman, and W. A. Davis, “A new ultrawideband printed monopole antenna: the planar inverted cone antenna (PICA),” IEEE Trans. Antennas Propagat., vol.52, pp.1361-1365, May 2004.
    [46]H. K. Lee, J. K. Park, and J. N. Lee, “Design of a planar half-circle-shaped UWB notch antenna,” Microwave Opt. Technol. Lett., vol. 47, no. 1, pp. 9-11, Oct. 2005.
    [47]S.-W Su, K.-L. Wong, and C.-L. Tang, “Ultra-wideband square planar monopole an-tenna for IEEE 802.16a operation in the 2-11-GHz band,” Microwave Opt. Technol. Lett., vol. 42, no. 6, pp. 463-466, Sep. 2004.
    [48]W.-C. Wu and C.-M. Wu, "Broadband dual-frequency CPW-fed planar monopole an-tenna with rectangular notch," Electron. Lett., vol. 40, pp. 642-643 , May 2004.
    [49]W.-C. Liu, "Design of a CPW-fed notched planar monopole antenna for multiband op-erations using a genetic algorithm," IEE Proc.-Microw. Antennas Propag., vol. 152, no. 4, pp.273-277, Aug. 2005.
    [50]K.-L. Wong, C.-H. Wu, and S.-W Su, “Ultrawide-band square planar metal-plate monopole antenna with a trident-shaped feeding strip,” IEEE Trans. Antennas Propa-gat., vol.53, pp.1262-1269, Apr. 2005.
    [51]J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Analysis and design of UWB disc monopole antennas,” in Proc. Inst. Elect. Eng. Seminar on Ultra Wideband Communi-cations Technologies and System Design, Queen Mary, University of London, U.K., Jul. 2004, pp. 103–106.
    [52]J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Study of a printed circular disc monopole antenna for UWB systems,” IEEE Trans. Antennas Propagat., vol. 53, pp. 3500-3504, Nov. 2005.
    [53]H. Schantz, The art and science of ultrawideband antennas, Artech House, Boston, 2005.
    [54]C. A. Balanis, Antenna theory: analysis and design, John Wiley and Sons, Inc., New York, 1997.
    [55]C. H. Papas and R. King, “Input impedance of wide-angle conical antennas fed by a coaxial line,” Proc. IRE, vol. 37, pp. 1269-1271, Nov. 1949.
    [56]C. H. Papas and R. King, “Radiation from wide-angle conical antennas fed by a coaxial line,” Proc. IRE, vol. 39, pp. 49-51, Jan. 1951.
    [57]G. H. Brown and O. M. Woodward, Jr., “Experimentally determined radiation charac-teristics of conical and triangular antennas,” RCA Rev., vol. 13, no. 4, pp. 425-452, Dec. 1952.
    [58]K.-L Wong and Y.-F Lin, “Stripline-fed printed triangular monopole,” Electron. Lett., vol. 33, pp. 1428-1429, Aug. 1997.
    [59]J.-P. Lee, S.-O. Park, and S.-K. Lee, “Bow-tie wide-band monopole antenna with the novel impedance-bandwidth technique,” Microwave Opt. Technol. Lett., vol. 36, pp. 448-452, June 2002.
    [60]J. M. Johnson and Y. Rahmat-Samii, “The tab monopole,” IEEE Trans. Antennas Propagat., vol.45, pp.187-188, Jan. 1997.
    [61]Z. N. Chen and Y. W. M. Chia, “Impedance characteristics of EMC triangular planar monopoles,” Electron. Lett., vol. 37, no. 21, pp. 1271-1272, Oct. 2001.
    [62]M. Cabedo-Fabrés, A. V. Nogueira, and M. F. Bataller, “A wideband arrowhead planar monopole antenna for multi-service mobile systems,” Microwave Opt. Technol. Lett., vol. 37, no. 3, pp. 188-190, May 2003.
    [63]T. Dissanayake, K. Esselle, and Y. Ge, "A printed triangular-ring antenna with a 2:1 bandwidth," Microwave Opt. Technol. Lett., vol. 44, no. 1, pp. 51-53, Jan. 2005.
    [64]M.-C. T. Huynh, “Numerical and experimental investigation of planar inverted-F an-tennas for wireless communication applications,” Master thesis, Virginia Polytechnic Institute and state University, 2000.
    [65]Z. N. Chen, “Experiments on input impedance of tilted planar monopole antenna,” Mi-crowave Opt. Technol. Lett., vol. 26, no. 3, pp. 202-204, Aug. 2000.
    [66]Z.-N. Chen, X.- H. Wu, H. F. Li, N. Yang, and M. Chia, “Considerations for source pulses and antennas in UWB radio system,” IEEE Trans. Antennas Propagat., vol.52, pp. 1739-1748, Jul. 2004.
    [67]K. S. Yee, “Numerical solution of initial boundary-value problems involving Max-well’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, May 1966.
    [68]A. Taflove, Advances in computational electromagnetics, Artech House, 1998.
    [69]O. M. Ramahi, “Near- and far-field calculations in FDTD simulations using Kirchhoff’s surface integral representation,” IEEE Trans. Antennas Propagat., vol.45, pp.753-759, May 1997.
    [70]B. Scheers, M. Acheroy and A. Vander Vorst, “Time-domain simulation and charac-terization of TEM horns using a normalized impulse response,” IEE Proc.-Microw. An-tennas Propag., vol. 147, pp. 463-468, Dec. 2000.
    [71]T. G. Ma and S. K. Jeng, “Planar miniature tapered-slot-fed annular slot antennas for ultra-wideband radios,” IEEE Trans. Antennas Propag., vol. 53, pp. 1194-1202, Mar. 2005.
    [72]G. E. Evans, Antenna measurement techniques, Artech House, Norwood, MA, 1990.
    [73]J. D. Kraus, Antennas, 2nd ed., McGraw-Hill, New York, 1988.
    [74]L. Paulsen, J. B. West, W. F. Perger, and J. Kraus, “Recent investigations on the vol-cano smoke antenna,” in Proc. IEEE Antennas Propagat. Soc. Int. Symp. Dig., vol. 3, June 2003, pp. 845-848.
    [75]T. Taniguchi and T. Kobayashi, “An omnidirectional and low-VSWR antenna for ultra-wideband systems,” in Proc. IEEE RAWCON 2002, pp. 145-148.
    [76]J. Yeo, Y. Lee, and R. Mittra, “Wideband slot antennas for wireless communications,” IEE Proc.-Microw. Antenna Porpaga., vol. 151, no. 4, pp. 351-355, Aug. 2004.
    [77]A. D. Wunsch, "Fourier series treatment of the sleeve monopole antenna," IEE Pro-ceedings, vol. 135, pp. 217-225, Aug. 1988.
    [78]Staff of Radio Research Laboratory of Harvard University, Very high frequency tech-niques, McGraw-Hill, 1947, pp. 119-137.
    [79]R. King, “Asymmetrically driven antennas and the sleeve dipole,” Proc. IRE, pp. 1154-1163, Oct. 1950.
    [80]M. Rahman, M. A. Stuchly, and M. Okoniewski, "Dual-band strip-sleeve monopole for handheld telephone," Microwave Opt. Technol. Lett., vol. 21, no. 2, pp. 79-82, Apr. 1999.
    [81]R. W. P. King, Theory of linear antenna, Harvard University Press, 1956, pp. 403-416.
    [82]A. J. Poggio and P. E. Mayes, "Pattern bandwidth optimization of the sleeve antenna," IEEE Trans. Antennas Propagat., vol. 14, pp. 643-645, Sep. 1966.
    [83]M. Ali, M. Okoniewski, M. A. Stuchly, and S. S. Stuchly, “Dual-frequency strip-sleeve monopole for laptop computers,” IEEE Trans. Antennas Propag., vol. 47, pp. 317-323, Feb. 1999
    [84]K. G. Thomas, N. Lenin, and M. Sreenivasan, “Wide-band planar disc monopole,” IEEE Trans. Antennas Propag., vol. 54, pp. 1229-1341, Apr. 2006.
    [85]H.-D. Chen, H.-M. Chen, and W.-S. Chen, "Planar CPW-fed sleeve monopole antenna for ultra-wideband operation," IEE Proc.-Microw. Antenna Porpaga., vol. 152, no. 6, pp. 491-494, Dec. 2005.
    [86]S.-B. Chen, Y.-C. Jioa, W. Wang, and Q.-Z. Liu, "Wideband CPW-fed uniplanar sleeve-shaped monopole antenna," Microwave Opt. Technol. Lett., vol. 47, no. 3, pp. 245-247, Nov. 2005.
    [87]C. H. Cheng, W. J. Lv, Y. Chen, and H. B. Zhu, "A dual-band strip-sleeve monopole antenna fed by CPW," Microwave Opt. Technol. Lett., vol. 42, no. 1, pp. 70-72, Jul. 2004.
    [88]J.-W Wu, H.-M Hsiao, J.-H. Lu, and Y.-D. Wang, “Dual-broadband T-shaped mono-pole antenna for wireless communication,” in Proc. IEEE Antennas Propagat. Soc. Int. Symp. Dig., vol. 2, July 2005, pp. 470-473.
    [89]J.-W. Wu, Y.-D. Wang, H.-M. Hsiao, and J.-H. Lu, "T-shaped monopole antenna with shorted L-shaped strip-sleeves for WLAN 2.4/5.8-GHz operation," Microwave Opt. Technol. Lett., vol. 46, no. 1, pp. 65-69, Jul. 2005.
    [90]H.-M. Hsiao, J.-H. Lu, and J.-W. Wu, "Y-shaped monopole antenna with dual-broadband operation for WLAN," Microwave Opt. Technol. Lett., vol. 46, no. 1, pp. 1476-1480, Aug. 2006.
    [91]W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, New York, 2nd edition, 1998.
    [92]R. N. Simons, R. Q. Lee, and T. D. Perl, “Non-planar linearly tapered slot antenna with balanced microstrip feed,” in Proc. IEEE Antennas Propagat. Soc. Int. Symp. Dig., vol. 4, Jul. 1992, pp. 2109-2112.
    [93]J. Kim, T. Yoon, J. Kim, and J. Choi, “Design of an ultra wide-band printed monopole antenna using FDTD and genetic algorithm,” IEEE Microw. Wireless Compon. Lett., vol.15, no. 6, pp. 395-397, Jun. 2005.
    [94]Z. N. Low, J. H. Cheong, and C. L. Law, “Low-cost PCB antenna for UWB applica-tions,” IEEE Antennas wireless Propagat. Lett., vol.4, pp. 237-239, 2005.
    [95]Z. N. Chen, T. S. P. See, and X. Qing, “Small printed ultrawideband antenna with re-duced ground plane effect,” IEEE Trans. Antennas Propagat., vol. 55, pp. 383-388, Feb. 2007.
    [96]T.Yang and W. A. Davis, “Planar half-disk antenna structures for ultrawideband com-munications,” in IEEE Antennas Propag. Soc. Int. Symp. Dig., 2004, pp. 2508-511.
    [97]J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Printed circular ring monopole an-tennas,” Microwwave Opt. Technol. Lett., vol. 45, no. 5, pp. 372-375, Jun. 2005.

    下載圖示 校內:2008-07-20公開
    校外:2008-07-20公開
    QR CODE