簡易檢索 / 詳目顯示

研究生: 吳俊昌
Wu, Chun-Chang
論文名稱: 固視眼球運動量化分析之研究
The Quantitative Study on Fixation Eye Movement
指導教授: 陳天送
Chen, TainSong
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 56
中文關鍵詞: 眼球運動固視
外文關鍵詞: eye movement, fixation
相關次數: 點閱:85下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類的眼球運動是經由中樞神經系統,包括大腦、小腦、腦幹等相互配合而完成,因此對於中樞神經系統受損或病變、退化的患者,其所產生的眼球運動將有異於正常人,因此有人在不同腦部病症的量測及判別上,運用眼球運動來做一參考指標。固視眼球運動被認為是由位置及速度參數來做其特性參數的眼球運動,本研究亦根據所量測得之眼球位置波形來做為分析其腦部病變之依據,以提供臨床上非侵入方式幫助醫師診斷。

    本研究的受測對象可分為一般組、運動員組和病患組三個群組。64位病患其主要症狀皆為一般精神分裂症的病徵(程度不一,但皆經由醫師診斷),並與46名一般組及5名運動員組做進行結果比對。一般組和運動員組皆為無任何視覺上的病症。三群組在量測前都有告知完整的量測過程。

    經由水平偏態係數的分析顯示,在注視不同位置時的水平分量,其散佈皆呈現常態分佈,此一結果與先前本實驗室利用Camera方式的量測結果相同。所以依據此一特性吾人使用高斯分佈曲線輪廓來擬合固視之位置散佈。結果顯示由其水平方向之變異數來看,其擾動上,病患組其平均值較其他兩群組大且變異量也大之較不穩定的狀態。在不同組別的高斯分佈參數上,雖然在運動員組的平均值較一般組來得高,但是在其變異數方面則比一般組來得小,而病患組則比另外兩群組在平均數或是變異數方面都來得高。在不同群組的統計比較上,一般人跟運動員,和病患在右眼的參數上有著統計上的差異,其左眼反而無明顯差異。比較同一群組的左右眼的統計差異發現,在一般人、運動員的左右眼的比較上,在統計上,其都不具有明顯的差異,但是在比對病患的左右眼後發現,在病患的右眼跟左眼的差異上,具有統計上明顯的差異。

    從上所述,發現在病患的右眼上,可能因為腦部病變的影響,而使得其高斯參數顯現出不同於其它群組,甚至是同一群組,不同眼的統計分析上具有差異性。即高斯分佈參數σ能有效地區分病患組和一般組跟運動員組的差異;在本研究中所得到的結果將可作為另一種分析固視眼球運動的方式以及作為醫師在臨床診斷上的參考依據。

    Eye movement is controlled by the central nervous system (CNS) through coordination of several areas in cerebral cortex, cerebellum, and brain stem, etc. For patients suffered from CNS lesions, change or degeneration of brain function will induce eye movement disorders. Therefore, several previous studies proposed that eye movement could be used to evaluate the brain conditions.
    Visual fixation has been modeled as a system consisting of a position channel and a velocity channel. In this study, we intend to analyze the patterns of visual fixation for the normal and patient subjects to find a useful parameter to provide a noninvasive method to assist the neurologists in the diagnosis of patients with brain diseases.
    The subjects tested in this research were divided into three groups: normal, sportsman, and patient groups. The patient group consists of sixty-four patients who were diagnosed with schizophrenia and classified based on different degree of seriousness in syndrome by a neurologist. The results were compared with forty-six normal subjects and five subjects who are skillful in table tennis. Subjects were assured to have normal vision with or without optical correction before testing. All subjects were aware of the purpose and the testing procedure of this study.
    Skewness analysis of the horizontal fixation shows that the histogram of fixation deviation can be approximated by a normal distribution, which is consistent with a previous investigation by using CCD camera measurement in our laboratory. Analysis of the standard deviation (STD) of the fixation deviation demonstrates that the patient tends to have more variance than the normal subject, which indicates the former has more unstable fixation pattern. Additionally, subjects in the sportsman group tend to have larger mean of STDe than the normal group. For the patient group, significant difference in STD was also found between the right and the left eyes. It might be caused by pathological changes in the brain for the patients. In conclusion, STD of fixation pattern is valuable in the diagnosis of patients with schizophrenia.

    目錄 摘要..........................................................................I 英文摘要.....................................................................II 致謝.........................................................................IV 目錄..........................................................................V 圖目錄......................................................................VII 表目錄........................................................................X 第一章 緒論.................................................................1 第1-1節 眼球運動簡介.........................................................1 第1-2節 眼球運動的分類.......................................................3 第1-3節 眼球運動的測量方式...................................................5 第1-4節 固視(Fixation)眼球運動...............................................8 第1-5節 固視(Fixation)控制神經元............................................10 第二章 文獻回顧與研究動機..................................................12 第2-1節 研究動機............................................................12 第2-2節 固視(Fixation)控制機制..............................................12 第2-3節 固視眼球運的神經機制................................................14 第2-4節 異常的眼球運動波形..................................................17 第三章 材料與方法..........................................................19 第3-1節 實驗設備簡介........................................................19 第3-2節 實驗架構與實驗過程..................................................23 第3-2-1節 架構概述............................................................23 第3-2-2節 校正程序............................................................25 第3-2-3節 量測過程............................................................26 第3-3節 Skewness 資料對稱性分析.............................................31 第3-4節 統計分析............................................................33 第3-5節 高斯模型擬合分析....................................................38 第3-6節 參數介紹及線性度測試................................................39 第四章 結果與討論..........................................................40 第4-1節 線性度測試..........................................................40 第4-2節 Skewness 參數結果...................................................42 第4-3節 水平分量標準差......................................................45 第4-4節 高斯分佈參數 σ......................................................46 第五章 討論與結論..........................................................50 參考文獻.....................................................................52 圖目錄 圖1-1 視覺歷程簡圖.................................................................................1 圖1-2 右眼水平切面圖.............................................................................2 圖1-3 視網膜切面圖.................................................................................2 圖1-4 眼球運動分類圖.............................................................................3 圖1-5(a) 眼底檢測鏡................................................................................6 圖1-5(b) 利用眼底檢測鏡所觀測到之視網膜影像................................6 圖1-6 紅外線反射技術配置圖.................................................................6 圖1-7 磁感應線圈架構及配戴方式.........................................................7 圖1-8 眼電圖之工作示意圖.....................................................................8 圖1-9 固視眼球運動分類波形.................................................................9 圖1-10 脈動產生器.................................................................................11 圖2-1 固視回授方塊示意圖...................................................................13 圖2-2 K值影響的波形...........................................................................13 圖2-3 上丘到全間歇神經元的訊息傳遞路徑.......................................15 圖2-4 緩慢漂移波形...............................................................................17 圖2-5 跳視干擾.......................................................................................18 圖2-6 眼振。上:鐘擺型;下:急動型.......................................................18 圖3-1 Skalar IRIS Model-6500...............................................................19 圖3-2 紅外線眼動儀器電路架構示意圖...............................................21 圖3-3 LabVIEW介面圖.........................................................................23 圖3-4 實驗架構示意圖...........................................................................24 圖3-5 目標點位置間距簡圖...................................................................24 圖3-6 校正步驟圖示...............................................................................25 圖3-7 實際測量的示意圖.......................................................................27 圖3-8 線性區段不佳圖形.......................................................................28 圖3-9 線性區段無可用參考點...............................................................28 圖3-10 固視區段不佳...............................................................................29 圖3-11 選取到的眨眼區域.......................................................................30 圖3-12 預測波形.......................................................................................31 圖3-13 偏態示意圖...................................................................................32 圖3-14 高斯公式及圖形...........................................................................38 圖4-1 儀器線性度測試結果之一...........................................................41 圖4-2 注視不同位置的skewness參數..................................................42 圖4-3 運動員、一般人與病患的skewness值........................................44 圖4-4 左右眼注視不同位置下的SD.....................................................45 圖4-5 高斯分佈吻合圖形.......................................................................46 圖4-6 眼球凝視位置的散佈情形 σ 參數...........................................47 圖4-7 不同群組間的T-test.....................................................................48 圖4-8 兩眼間的T-test.............................................................................49 表目錄 表1-1 轉向系統眼球運動.........................................................................4 表1-2 轉斜系統眼球運動.........................................................................4 表3-1 Skalar IRIS Model-6500硬體規格表........................................20 表4-1 線性度測試結果...........................................................................40 表4-2 注視不同位置的偏態係數值.......................................................42 表4-3 一般人與病患的偏態係數值.......................................................43 表4-4 群組分類.......................................................................................43 表4-5 注視不同位置下的SD.................................................................45 表4-6 一般人注視不同位置的σ...........................................................47 表4-7 一般人與病患的σ參數...............................................................48

    參考文獻
    [1] Z. R. Cherif and J. F. Motsch, A Parametric Analysis of Eye Tremer Movement During Ocular Fixation, Applied to Schizophrenia., Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE ,Volume 3, 17-21 Sept. 2003 , Page(s):2710 – 2713
    [2] F. Moller, T. Bek, clinical investigation:Lack of correlation between visual acuity and fixation stability after photocoagulation for diabetic maculopathy, Graefes Arch Clin Exp Ophthalmol, 2000, 7,566-70.
    [3] Z.Ramdane Cherif, A. Nait-ali, J. F. Motsch, Recoding and analysis a eye movement during ocular fixation in schizophrenic subjects ,NEBE’02 28th Annual Northeast Bioengineering Conference of the IEEE-EMBS, Philadelphia USA 2002.
    [4] K. J. Ciuffreda and B. Tannen, Eye Movement Basics for the Clinician, Mosby, 1995.
    [5] R. J. Leight and D. S. Zee, The Neurology of Eye Movements 2nd ed., F. A. Davis, 1991.
    [6] Y. Lee, Study of Velocity Profiles for Saccadic Eye Movements, Institute of Biomedical engineering National Cheng Kung University Tainan 70101, Taiwan, R. O. C.2000.
    [7] H. Huang, Quantitative Analysis of The Fixation Eye Movement, Institute of Biomedical engineering National Cheng Kung University Tainan 70101, Taiwan, R. O. C., 1999
    [8] Yagi T, Kamura E, Shitara A. Three dimensional eye movement analysis during off vertical axis rotation in human subjects. Arch Ital Biol 200;138;39-47
    [9] John D. O’Sullivan, Paul Maruff, Peter Tyler, Unilateral pallidotomy for Parkinson’s disease disrupts ocular fixation, Journal of Clinical Neuroscience 2003 10(2), 181-185.
    [10] X. F. Amador, et al, Visual fixation and smooth pursuit eye movement abnormalities in patients with schizophrenia and their relatives, Journal of Neuropsychiatry, 1995, 7, 197-206
    [11] R. B. Rosse et al. Visual fixation deficits and evidence of cognitive impairments in schizophrenia, Biol. Psychiatry, 1992, 31, 412-414.
    [12] A. D. Radant, K. Claypoole, D. K. Weigerson, D. S. Cowley, P. P. Byrne, Relationship between neuropsychological and oculmotor measures in schizophrenia patients and normal controls, Biol. Psychiatry, 1997, 42, 797-805
    [13] 李文森, 解剖生理學, 華杏, 民83.
    [14] M. Gur, D. M. Snodderly,“Visual receptive fields of neurons in primary visual cortex (v1) move in space with the eye movement of fixation,”Vision Research, vol. 37, no. 3, pp. 257-265, 1997.
    [15] M. S. A. Graziano and C. G. Gross,“Visual responses with and without fixation : neurons in premotor cortex encode spatial locations independently of eye position,”Experimental Brain Research, vol. 118, pp. 373-380, 1998.
    [16] H. Mushiake, Y. Tanatsugu, and J. Tanji,“Neuronal activity in the ventral part of premotor cortex during target-reach movement is modulated by direction of gaze,”Journal Neurophysiology, vol. 78, pp. 567-571, 1997.
    [17] T. Paus, M. Kalina, L. Patockova, Y. Angerova, R. Cerny, P. Mecir, J. Bauer and P. Krabec,“Medial vs lateral frontal lobe lesions and differential impairment of central-gaze fixation maintenance in man,”Brain, vol. 114, pp. 2051-2069, 1991.
    [18] J. Schlag, M. Schlag-Rey and I. Pigarev,“Supplementary eye field : influence of eye position on neural signals of fixation,”Experimental Brain Research, vol. 90, pp. 302-306, 1992.
    [19] W. Kosnik, J. Fikre and R. Sekuler,“Visual fixation stability in older adults,”Investigation Ophthalmology & Visual Science, vol. 27, no 12, pp. 1720- 1725, 1986.
    [20] D. C. Gooding, G. A. Grabowski, C. S. Hendershot, Fixation stability in schizophrenia, bipolar, and control subjects. Psychiatry Research, 97(2000), 119-128.
    [21] M. Morisita, T. Yagi, The stability of human eye orientation during visual fixation and imagined fixation in three dimensions, Auris Nasus Larynx 28, 301-304, 2001
    [22] T. J. Anderson, I. H. Jenkins, D. J. Brooks, M. B. Hawken, R. S. J. Frackowiak and C. Kennard,“Cortical control of saccades and fixation in man: a PET study,”Brain, vol. 117, pp. 1073-1084, 1994.
    [23] D. P. Hanes, W. F. Patterson II, and J. D. Schall,“Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity,”Journal Neurophysiology, vol. 79, pp. 817-834, 1998.
    [24] J. L. Johnston, J. A. Sharpe and M. J. Morrow,“Spasm of fixation:a quantitative study,”Journal of the Neurological Sciences, vol. 107, pp. 166-171, 1992.
    [25] F. Moller, M. L. Laursen, J. Tygesen, A. K. Sjolie, Bioocular quantification and characterization of microsaccades, Graefe’s Arch Clin Exp Ophthalmol, 2002, 240;765-770.
    [26] S. Martinez-Conde, Stephen L. Macknik and David H. Hubel, Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nature neuroscience, vol 3 no 3,2000.
    [27] J. R. Hotson,“Cerebellar control of fixational eye movements,”Neurology, vol. 32, pp. 31-36, 1982.
    [28] D. Cleveland and N. Cleveland,“Eyegaze eyetracking system,”Imagina Images Beyond Imagination Eleventh Monte-Carlo International Forum on New Images, Jan. 29-31, 1992.
    [29] I. Starker and R. A. Bolt,“A gaze-responsive self-disclosing display,”Human factors in computing systems : proceedings of the CHI ’90 conference CHI ’90 Conference, April, 1990.
    [30] B. C. Motter and G. F. Poggio,“Binocular fixation in the rhesus monkey : spatial and temporal characteristics,”Experimental Brain Research, vol. 54, pp. 304-314, 1984.
    [31] D. M. Snodderly,“Effects of light and dark environments on macaque and human fixational eye movements,”Vision Research, vol. 27, no. 3, pp. 401-415, 1987.
    [32] M. T. Ukwade and H. E. Bedell,“Stability of oculomotor fixation as a function of target contrast and blur,”Optometry and Science, vol. 70, no. 2, pp. 123-126, 1993.
    [33] R. J. Leigh, S. E. Thurston, R. L. Tomsak, G. E. Grossman and D. J. Lanska,“Effect of monocular visual loss upon stability of gaze,” Investigation Ophthalmology & Visual Science, vol. 30, no 2, February 1989.
    [34] J. Nachmias,“Two-dimensional motion of the retinal image during monocular fixation,”Journal Optical Social American, vol. 49, pp. 901-908, 1959.

    下載圖示 校內:2007-08-01公開
    校外:2007-08-01公開
    QR CODE