簡易檢索 / 詳目顯示

研究生: 張舜傑
Zhang, Shun-Jie
論文名稱: 一般化運動鍊摺紙啟發機構設計
Origami-inspired Mechanism Design with Generalized Kinematic Chain Method
指導教授: 吳馬丁
Torbjörn Nordling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 42
中文關鍵詞: 摺紙動態摺紙一般化運動鍊機構設計
外文關鍵詞: origami, action origami, generalized kinematic chain, mechanism design
相關次數: 點閱:126下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多摺紙啟發的機構已經應用於工程,例如可展開的太陽能電池陣列和機器人。但是,仍然缺少摺紙啟發機構的系統設計方法。傳統機構設計的方法需要修改。
    本文的目的是創建一種摺紙啟發機構的系統設計方法。更具體地說,我們通過將摺紙映射到傳統機構來探索將傳統機構的現有設計方法擴展到摺紙啟發的機構的方法。
    我們使用現有的摺紙風格的夾爪設計,基於顏氏創意性機構設計方法,綜合了所有可能的設計概念。考慮了摺紙啟發機構的特殊設計約束,以找到符合所需要求的所有可行的新設計。
    我們開發了一種新的拓撲結構來表達摺紙啟發機構的特徵。我們擴展了顏氏創意性機構設計方法,系統系統性的尋找具可行性的摺紙機構設計之概念和圖譜。
    本文提出了一種基於顏氏創意性機構設計方法的摺紙機構設計方法。通過分析平面上的頂點和摺痕的配置,我們為摺紙啟發機構找到可行的拓撲結構。

    Many origami-inspired mechanisms have been studied in engineering applications, e.g. deployable solar arrays, and robots. However, a systematic design methodology of origami-inspired mechanisms is still missing. Current tools for traditional mechanism design require extension to be applicable.
    The objective of this thesis is to create a systematic design methodology of origami-inspired mechanisms. More specifically, we explore the extension of the existing design methodology of the traditional mechanisms to origami-inspired mechanisms by mapping the origami to traditional mechanisms.
    We use an existing origami-inspired gripper design to synthesize all possible design concepts based on Yan's creative mechanism design methodology. Special design constraints of origami-inspired mechanisms are taken into account to find all feasible new designs subject to desired requirements.
    We developed a new notation of topological structure to express the characteristics of the origami-inspired mechanism. Moreover, we have extended Yan's creative mechanism design methodology to systematically synthesize an atlas of feasible origami designs and applied it to explain an existing gripper and generated a novel one.
    This thesis presents an origami-inspired mechanism design methodology based on Yan's creative mechanism design methodology. By analyzing the configuration of vertices and creases on the plane, we demonstrated that one can identity the feasible topological structures for origami-inspired mechanisms among all possible ones generated using the generalized kinematic chain.

    Chinese abstract i Abstract ii Acknowledgment iii Table of Contents iv List of Tables vi List of Figures vii 1 Introduction 1 1.1 Background...1 1.2 Motivation...1 1.3 Objective...2 1.4 Thesis overview...2 2 Literature review 3 2.1 Case review...3 2.2 Origami design method...6 3 Kinematic theory for origami 9 3.1 Rigid origami...9 3.2 Loop closure constraint...10 3.3 Vertex origami represented with spherical linkage...12 4 Topological structure of origami 15 4.1 Generalized kinematic chain graph...15 4.2 Vertices-creases graph...17 4.3 Vertices labeled generalized kinematic chain...18 4.4 Expanded generalized kinematic chain...19 4.5 Mechanisms with an internal border and implicit vertex...22 5 An application to gripper design 24 5.1 Description of the existing design...24 5.2 Generalization...25 5.3 Synthesis of the atlas of kinematic chains...26 5.4 Imposing design requirements and constrains...28 5.5 Specialization...31 5.6 Particularization of the atlas of new designs...32 6 Conclusion and future work 35 6.1 Conclusion...35 6.2 Future works...35 References 36 Appendix A Rights and permissions 38

    Belke, C. H. and Paik, J. (2017). Mori: a modular origami robot. IEEE/ASME Transactions on Mechatronics, 22(5):2153–2164.
    Cervantes-Sánchez, J. J. and Medellı́n-Castillo, H. I. (2002). A robust classification scheme for spherical 4r linkages. Mechanism and machine theory, 37(10):1145–1163.
    Chiang, C.-H. (1988). Kinematics of spherical mechanisms. Cambridge University Press.
    Chiu, Y.-T. (2014). On the number synthesis of generalized kinematic chains. Master’s thesis, National Cheng Kung University.
    Chu, J. and Sun, J. (2007). Synthesis of coupler curves of spherical four-bar mechanism through fast fourier transform. In 12th IFToMM World Congress, volume 24, page 27.
    Early, J. T., Hyde, R., and Baron, R. L. (2004). Twenty-meter space telescope based on diffractive fresnel lens. In UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts, volume 5166, pages 148–156. International Society for Optics and Photonics.
    Faber, J. A., Arrieta, A. F., and Studart, A. R. (2018). Bioinspired spring origami. Science, 359(6382):1386–1391.
    Felton, S., Tolley, M., Demaine, E., Rus, D., and Wood, R. (2014). A method for building self-folding machines. Science, 345(6197):644–646.
    Gattas, J. M. and You, Z. (2013). Quasi-static impact response of alternative origami-core sandwich panels. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection.
    Hatori, K. (2002). K’s Origami : Origami Construction. http://origami.ousaan.com/library/conste.html.
    Kim, S.-J., Lee, D.-Y., Jung, G.-P., and Cho, K.-J. (2018). An origami-inspired, self-locking robotic arm that can be folded flat. Science Robotics, 3(16):eaar2915.
    Lang, R. J. (1996). Origami and geometric constructions. Self Published (1996 2003).
    Lang, R. J. (2009). Mathematical methods in origami design. Bridges, pages 13–20.
    Mitani, J. (2007). Development of origami pattern editor (oripa) and a method for estimating a folded configuration of origami from the crease pattern. IPSJ Journal, 48(9):3309–3317.
    Miura, K. and Lang, R. J. (2009). The science of miura-ori: A review. Origami, 4:87–99.
    Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C. R., and Rus, D. (2015). An untethered miniature origami robot that self-folds, walks, swims, and degrades. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 1490–1496. IEEE.
    Miyashita, S., Meeker, L., Tolley, M. T., Wood, R. J., and Rus, D. (2014). Self-folding miniature elastic electric devices. Smart Materials and Structures, 23(9):094005.
    Nelson, T. G., Avila, A., Howell, L. L., Herder, J. L., and Machekposhti, D. F. (2019). Origami-inspired sacrificial joints for folding compliant mechanisms. Mechanism and Machine Theory, 140:194–210.
    Ocampo, J. M. Z., Vaccaro, P. O., Kubota, K., Fleischmann, T., Wang, T.-S., Aida, T., Ohnishi, T., Sugimura, A., Izumoto, R., Hosoda, M., et al. (2004). Characterization of gaas-based micro-origami mirrors by optical actuation. Microelectronic engineering, 73:429–434.
    Onal, C. D., Tolley, M. T., Wood, R. J., and Rus, D. (2015). Origami-Inspired Printed Robots. IEEE/ASME Transactions on Mechatronics, 20(5):2214–2221.
    Salerno, M., Zhang, K., Menciassi, A., and Dai, J. S. (2016). A Novel 4-DOF Origami Grasper With an SMA-Actuation System for Minimally Invasive Surgery. IEEE Transactions on Robotics, 32(3):484–498.
    Shaar, N. S., Barbastathis, G., and Livermore, C. (2014). Integrated folding, alignment, and latching for reconfigurable origami microelectromechanical systems. Journal of Microelectromechanical Systems, 24(4):1043–1051.
    Tolman, S. S., Delimont, I. L., Howell, L. L., and Fullwood, D. T. (2014). Material selection for elastic energy absorption in origami-inspired compliant corrugations. Smart materials and structures, 23(9):094010.
    Yan, H.-S. (1992). A methodology for creative mechanism design. Mechanism and machine theory, 27(3):235–242.
    Yan, H.-S. (1998). Creative design of mechanical devices. Springer Science & Business Media.
    Zirbel, S. A., Lang, R. J., Thomson, M. W., Sigel, D. A., Walkemeyer, P. E., Trease, B. P., Magleby, S. P., and Howell, L. L. (2013). Accommodating thickness in origami-based deployable arrays. Journal of Mechanical Design, 135(11).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE