| 研究生: |
陳宥蓁 Chen, Yu-Chen |
|---|---|
| 論文名稱: |
離子液體中電沉積InSb薄層及其電化學、結構組成與光電性質探討 Electrodeposition、Structural Property and Optiacl Characterization of InSb Thin Film from Ionic Liquids |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 電沉積 、半導體 、銻化銦 、離子液體 |
| 外文關鍵詞: | Indium antimonide, electrodeposition, semiconductor, ionic liquids |
| 相關次數: | 點閱:78 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究當中主要是利用室溫型離子液體1-Butyl-1-methylpyrrolidium Dicyanamide,BMP-DCA系統來進行銦(Indium)、銻(Antimony)以及銻化銦(Indium Antimonide)之電化學探討以及結構組成分析,最後進行InSb薄層之光電性質鑑定。
由於DCA-本身為優良的路易斯鹼,可幫助金屬鹽類溶解,簡化了實驗步驟,並且更進一步影響了這些金屬在離子液體系統中之電化學性質。
在In的部份會發現其電化學性質與其他溶液系統下明顯不同,而這部分的差異可能源自於DCA-的配位以及In之本身特性所造成的差異。而Sb(0)在本系統當中由X光繞射分析可以得知其為非晶相結構。
而在本研究當中利用成本較低廉之電沉積的方式製作InSb薄層,相較於水溶液,在此系統下可以不添加錯合劑而沉積出In比Sb為一比一之鍍層,而InSb薄層經過分析後得知其分佈均勻、覆蓋率與附著力佳且平坦,並且由XRD訊號可以得知此InSb薄層在60℃下不需經由鍛燒即有明顯的晶型,其能隙值為0.173 eV與理論值0.16~0.18 eV接近,並且具有明顯的光電性質,其平帶電位平均值為-0.84 V。更進一步討論其鍍層厚度對其性質之影響可以發現,當鍍層越厚則粒徑越大結晶性越好,能隙值則會逐漸下降。
In this study, the electrochemical behaviors, and morphologies of Indium (In(Ⅲ)), antimony(Sb(Ⅲ)) and electrodeposition of indium antimonide(InSb) alloys are investigated in a room temperature 1-Butyl-1-methylpyrrolidium Dicyanamide(BMP-DCA) ionic liquid. The optical properties of the InSb thin film are also well studied.
As dicyanamide (DCA) anion is a Lewis base with good ligand properties, In(Ⅲ) and Sb(Ⅲ) salt could be dissolved in DCA-based ionic liquid by forming complex ions. Moreover, the strong coordination of the anions would influence the electrochemical properties of the metals.
In, Sb and InSb alloy thin films are fabricated by electrochemical deposition, in which a low cost and efficiency method, without using any complexing agent. Powder X-ray diffraction pattern indicated that Sb is amorphous phase, and the stoichiometric InSb electrodeposits were obtained under 60℃ is crystalline without any thermal annealing treatment after the deposition process.
The band gap of the InSb thin film obtained from FT-IR is 0.173 eV which is very close to the reported value of 0.16~0.18 eV, the average flat band potential was -0.84 eV, the results also show that grain size increases with increasing deposition charge; as a result, the band gap decreases.
1. M. Freemantle, An introduction to ionic liquids, Royal Society of chemistry, 2010.
2. T. Torimoto, T. Tsuda, K. Okazaki and S. Kuwabata, Adv Mater, 2010, 22, 1196-1221.
3. F. Endres, D. MacFarlane and A. Abbott, Electrodeposition from ionic liquids, John Wiley & Sons, 2008.
4. M. Krolikowska, M. Zawadzki and M. Krolikowski, J Chem Thermodyn, 2014, 70, 127-137.
5. J. L. Manson, C. R. Kmety, Q. Z. Huang, J. W. Lynn, G. M. Bendele, S. Pagola, P. W. Stephens, L. M. Liable-Sands, A. L. Rheingold, A. J. Epstein and J. S. Miller, Chemistry of Materials, 1998, 10, 2552-2560.
6. H. Y. Huang and P. Y. Chen, Electrochimica Acta, 2011, 56, 2336-2343.
7. P. Jensen, S. R. Batten, G. D. Fallon, D. C. R. Hockless, B. Moubaraki, K. S. Murray and R. Robson, Journal of Solid State Chemistry, 1999, 145, 387-393.
8. D. R. MacFarlane, S. A. Forsyth, J. Golding and G. B. Deacon, Green Chemistry, 2002, 4, 444-448.
9. D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth and G. B. Deacon, Chem Commun, 2001, 1430-1431.
10. M.-J. Deng, P.-Y. Chen, T.-I. Leong, I. W. Sun, J.-K. Chang and W.-T. Tsai, Electrochemistry Communications, 2008, 10, 213-216.
11. D. X. Zhuang, M. J. Deng, P. Y. Chen and I. W. Sun, Journal of the Electrochemical Society, 2008, 155, D575-D579.
12. A. I. de Sa, S. Eugenio, S. Quaresma, C. M. Rangel and R. Vilar, Thin Solid Films, 2011, 519, 6278-6283.
13. A. I. de Sa, S. Eugenio, S. Quaresma, C. M. Rangel and R. Vilar, Surf Coat Tech, 2013, 232, 645-651.
14. T. I. Leong, Y. T. Hsieh and I. W. Sun, Electrochimica Acta, 2011, 56, 3941-3946.
15. M.-J. Deng, I. Sun, P.-Y. Chen, J.-K. Chang and W.-T. Tsai, Electrochimica Acta, 2008, 53, 5812-5818.
16. T. I. Leong, I. W. Sun, M. J. Deng, C. M. Wu and P. Y. Chen, Journal of the Electrochemical Society, 2008, 155, F55-F60.
17. M. Wu, N. R. Brooks, S. Schaltin, K. Binnemans and J. Fransaer, Physical chemistry chemical physics : PCCP, 2013, 15, 4955-4964.
18. M. Steichen, R. Djemour, L. Gütay, J. Guillot, S. Siebentritt and P. J. Dale, The Journal of Physical Chemistry C, 2013, 117, 4383-4393.
19. M.-J. Deng, P.-C. Lin, J.-K. Chang, J.-M. Chen and K.-T. Lu, Electrochimica Acta, 2011, 56, 6071-6077.
20. B. C. M. Martindale, S. E. W. Jones and R. G. Compton, Physical Chemistry Chemical Physics, 2010, 12, 1827-1833.
21. H. Yi-Ting and I. W. Sun, Electrochemistry Communications, 2011, 13, 1510-1513.
22. 李嗣涔, 管傑雄 and 孫台平, 1995.
23. H. Minoura, Denki Kagaku, 1991, 59, 378-385.
24. S. Z. El Abedin and F. Endres, Chemphyschem, 2006, 7, 58-61.
25. S. Z. El Abedin and F. Endres, Acs Sym Ser, 2003, 856, 453-466.
26. G. F. Fulop and R. M. Taylor, Annu Rev Mater Sci, 1985, 15, 197-210.
27. D. Lincot, Thin Solid Films, 2005, 487, 40-48.
28. C. D. Lokhande and S. H. Pawar, Phys Status Solidi A, 1989, 111, 17-40.
29. A. P. Abbott, G. Frisch and K. S. Ryder, Annu Rev Mater Res, 2013, 43, 335-358.
30. F. Endres, Chemphyschem, 2002, 3, 144-+.
31. O. Mann, G. B. Pan and W. Freyland, Electrochimica Acta, 2009, 54, 2487-2490.
32. A. R. Despic, D. M. Drazic, M. M. Purenovic and N. Cikovic, Journal of Applied Electrochemistry, 1976, 6, 527-542.
33. H. S. Kim, K. H. Lee, M. C. Shin, S. Y. Kim and M. H. Dzo, Scripta Materialia, 1998, 38, 1549-1555.
34. L. Ribeaucourt, G. Savidand, D. Lincot and E. Chassaing, Electrochimica Acta, 2011, 56, 6628-6637.
35. H. C. Huang and C. S. Lin, Journal of the Electrochemical Society, 2012, 160, H113-H120.
36. K. Jain, R. K. Sharma, S. Kohli, K. N. Sood and A. C. Rastogi, Current Applied Physics, 2003, 3, 251-256.
37. E. Chassaing, N. Naghavi, M. Bouttemy, V. Bockelee, J. Vigneron, A. Etcheberry and D. Lincot, Journal of The Electrochemical Society, 2012, 159, D347.
38. A. G. Munoz, S. B. Saidman and J. B. Bessone, Journal of the Electrochemical Society, 1999, 146, 2123-2130.
39. M. J. Barbier, J. Bouteillon and M. Taoumi, Journal of the Electrochemical Society, 1986, 133, 2502-2505.
40. M. Mohamedi, S. Martinet, J. Bouteillon and J. C. Poignet, Electrochimica Acta, 1998, 44, 797-803.
41. M. K. Carpenter and M. W. Verbrugge, J Mater Res, 1994, 9, 2584-2591.
42. Y. Traore, S. Legeai, S. Diliberto, G. Arrachart, S. Pellet-Rostaing and M. Draye, Electrochimica Acta, 2011, 58, 532-540.
43. M. H. Yang and I. W. Sun, J Chin Chem Soc-Taip, 2004, 51, 253-260.
44. J. S. Y. Liu and I. W. Sun, Journal of the Electrochemical Society, 1997, 144, 140-145.
45. R. K. Iyer and S. G. Deshpande, Journal of Applied Electrochemistry, 1987, 17, 936-940.
46. X. Huang, Y. Zhu, X. Dou and G. Li, Materials Letters, 2008, 62, 249-251.
47. A. S. Mogoda and T. M. Abd El-Haleem, Corrosion, 2003, 59, 3-10.
48. F. C. Moraes, I. Cesarino, V. Cesarino, L. H. Mascaro and S. A. S. Machado, Electrochimica Acta, 2012, 85, 560-565.
49. Z. Wang, W. Tian and X. Li, Journal of Alloys and Compounds, 2007, 439, 350-354.
50. Q. Jiang, R. Xue and M. Jia, Applied Surface Science, 2012, 258, 3854-3858.
51. T. Hirasawa, K. Sasaki, M. Taguchi and H. Kaneko, J Power Sources, 2000, 85, 44-48.
52. H. P. Nguyen, X. Peng, G. Murugan, R. J. M. Vullers, P. M. Vereecken and J. Fransaer, Journal of the Electrochemical Society, 2012, 160, D75-D79.
53. D. Del Frari, S. Diliberto, N. Stein, C. Boulanger and J.-M. Lecuire, Thin Solid Films, 2005, 483, 44-49.
54. M. L. Mares, F. Golgovici and T. Visan, Chalcogenide Lett, 2013, 10, 259-272.
55. M. H. Yang and I. W. Sun, Journal of Applied Electrochemistry, 2003, 33, 1077-1084.
56. S. Wei, M. Zhang, W. Han, Y. Yan, Y. Xue, M. Zhang and B. Zhang, Electrochimica Acta, 2011, 56, 4159-4166.
57. C. H. Kuo, J. M. Wu, S. J. Lin and W. C. Chang, Nanoscale Res Lett, 2013, 8.
58. A. T. Vogel, J. de Boor, J. V. Wittemann, S. L. Mensah, P. Werner and V. Schmidt, Crystal Growth & Design, 2011, 11, 1896-1900.
59. L. Lugani, D. Ercolani, F. Beltram and L. Sorba, Journal of Crystal Growth, 2011, 323, 304-306.
60. D. Ercolani, F. Rossi, A. Li, S. Roddaro, V. Grillo, G. Salviati, F. Beltram and L. Sorba, Nanotechnology, 2009, 20.
61. L. Lugani, D. Ercolani, L. Sorba, N. V. Sibirev, M. A. Timofeeva and V. G. Dubrovskii, Nanotechnology, 2012, 23.
62. S. R. Vangala, X. Qian, M. Grzesik, C. Santeufemio, W. D. Goodhue, L. P. Allen, G. Dallas, H. Dauplaise, K. Vaccaro, S. Q. Wang and D. Bliss, Journal of Vacuum Science & Technology B, 2006, 24, 1634-1638.
63. Rahul, A. K. Verma, R. S. N. Tripathi and S. R. Vishwakarma, Natl Acad Sci Lett, 2012, 35, 367-372.
64. R. M. Biefeld, Journal of Crystal Growth, 1986, 75, 255-263.
65. R. M. Biefeld and G. A. Hebner, Applied Physics Letters, 1990, 57, 1563-1565.
66. P. K. Chiang and S. M. Bedair, Applied Physics Letters, 1985, 46, 383-385.
67. M. K. Carpenter and M. W. Verbrugge, Journal of the Electrochemical Society, 1990, 137, 123-129.
68. J. Ortega and J. Herrero, Journal of the Electrochemical Society, 1989, 136, 3388-3391.
69. G. Mengoli, M. M. Musiani, F. Paolucci and M. Gazzano, Journal of Applied Electrochemistry, 1991, 21, 863-868.
70. M. C. Hobson and Leidheis.H, T Metall Soc Aime, 1965, 233, 482-&.
71. V. M. Kozlov, V. Agrigento, D. Bontempi, S. Canegallo, C. Moraitou, A. Toussimi, L. P. Bicelli and G. Serravalle, Journal of Alloys and Compounds, 1997, 259, 234-240.
72. J. J. McChesney, J. Haigh, I. M. Dharmadasa and D. J. Mowthorpe, Optical Materials, 1996, 6, 63-67.
73. G. Mengoli, M. M. Musiani and F. Paolucci, J Electroanal Chem, 1992, 332, 199-211.
74. T. Fulop, C. Bekele, U. Landau, J. Angus and K. Kash, Thin Solid Films, 2004, 449, 1-5.
75. J. Singh and P. Rajaram, AIP Conf. Proc., 2014, 1591, 965-967.
76. T. Tsuda and C. L. Hussey, Thin Solid Films, 2008, 516, 6220-6225.
77. M. H. Yang, M. C. Yang and I. W. Sun, Journal of the Electrochemical Society, 2003, 150, C544-C548.
78. 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司, 2002.
79. A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications, Wiley New York, 1980.
80. K. I. Popov, S. S. Djokić and B. N. Grgur, Fundamental aspects of electrometallurgy, Springer, 2002.
81. D. Pletcher, R. Greff, R. Peat, L. Peter and J. Robinson, Instrumental methods in electrochemistry, Elsevier, 2001.
82. B. J. Hwang, R. Santhanam and Y. L. Lin, Electrochimica Acta, 2001, 46, 2843-2853.
83. D. M. Smilgies, Journal of Applied Crystallography, 2009, 42, 1030-1034.
84. 鄭信民, 林麗娟, 主. 工研院材料所微結構分析實驗室*副研究員 and 自從X, 工業材料雜誌 (181), 頁, 2002, 100-108.
85. V. Kumar, S. Kr Sharma, T. Sharma and V. Singh, Optical Materials, 1999, 12, 115-119.
86. C. Wang, H. Wang and Z. Fang, Journal of Alloys and Compounds, 2009, 486, 702-705.
87. J. Estager, P. Nockemann, K. R. Seddon, G. Srinivasan and M. Swadzba-Kwasny, ChemSusChem, 2012, 5, 117-124.
88. S. Singh, K. Lal, A. K. Srivastava, K. N. Sood and R. Kishore, Indian J Eng Mater S, 2007, 14, 55-63.
89. S. R. Vishwakarma, A. Kumar, R. S. N. Tripathi, R. Das and S. Das, Indian J Pure Ap Phy, 2013, 51, 260-266.
90. S. R. Vishwakarma, A. K. Verma, R. S. N. Tripathi, S. Das and Rahul, Indian J Pure Ap Phy, 2012, 50, 339-346.
91. V. Senthilkumar, S. Venkatachalam, C. Viswanathan, S. Gopal, S. K. Narayandass, D. Mangalaraj, K. C. Wilson and K. P. Vijayakumar, Crystal Research and Technology, 2005, 40, 573-578.
92. L.-H. Chou and C. L. Hussey, Inorganic chemistry, 2014.
校內:2017-07-30公開