簡易檢索 / 詳目顯示

研究生: 范揚洺
Fan, Yang-Ming
論文名稱: 波譜資料同化應用於SWAN波浪模式
Spectral Wave Data Assimilation in SWAN Wave Model
指導教授: 李汴軍
Lee, Beng-Chun
高家俊
Kao, Chia Chuen
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 102
中文關鍵詞: 波浪模式波譜資料同化
外文關鍵詞: wave model, spectral data assimilation
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在利用波譜資料同化技術提昇波浪數值現報與預報模式之準確度。資料同化技術應用於數值預報與傳統預報方法最大的不同點在於:傳統的作法利用波浪數值模式進行推算(hindcast),並與現場觀測結果作比對,藉以調整波浪數值模式參數的設定,從中調校出最佳的參數組合,其後,波浪數值模式便被用來進行海況預報;相對於上述作法,波譜資料同化則是將波浪模式與即時觀測資料進行整合,利用即時資料對海況進行即時校正,以提昇波浪數值模式現報與預報的準確度。
    早期前人利用衛星波高或資料浮標波高進行資料同化,發現在距離實測資料較遠的格點會產生極端的修正參數。又本研究對於波浪數值模式的研究以作業化波浪預報為目標,故本研究擬採用連續資料同化進行資料同化,其中的方法擬引用Voorrips等人提出的分割最佳內插法(Optimal interpolation of Partition)進行修正,結合衛星波高資料與資料浮標波譜資料進行研究。經本研究可建立波譜資料同化技術,並探討波譜資料同化應用於颱風波浪數值模式效果,藉以驗證波譜資料同化模式的正確性及了解波譜資料同化模式應用於台灣海域之特性。由於波譜資料可以即時獲得,相反的,衛星資料即使可以即時取得,但不具有時間上的優勢,因此本研究探討波譜資料同化與衛星資料同化的差異性。

    The purpose of this study is to enhance the accuracy of numerical wave forecast with data assimilation. Traditional forecast is consisting in: uses numerical wave model to do hindcast, and then adjusting the parameters by measured data. Use numerical wave model to forecast wave after finding the best parameters. A technique – spectral data assimilation combine model results with measured data. Using measured data to correct model results immediately and to do wave forecast.
    Review past research, we find that the extreme parameters were produced at grid point in the distance of measured station by using data of wave height to do data assimilation. In order to make this research look forward to do operating numerical wave model, we adopt sequential data assimilation to do data assimilation. In the process of data assimilation, the optimal interpolation of partition from Voorrips, etc. is adopted and improved. And the analytic data is from satellites and data buoy. Expect to set up the technique of spectral data assimilation. And then discuss the result which using spectral data assimilation to typhoon numerical wave model in order to verify the accuracy of spectral data assimilation model and analyze the wave character Taiwan water. The spectral data is near real time, on the contrary, the satellite even near real time, but there is no advantageous in time domain. Therefore, this study discuss the difference between spectral data assimilation and satellite data assimilation.

    Abstract i 摘要 ii 誌謝 iii Contents iv List of Tables vi List of Figures vii List of Symbols xii Chapter 1 Introduction 1 1-1 Background 1 1-2 Research overview 4 1-3 Goal and objective 7 Chapter 2 Descriptions of the Numerical Wave Model and the Field Data 9 2-1 SWAN wave model 10 2-2 The field data 22 2-2.1 Wind field data 22 2-2.2 Significant wave height from altimeter data 23 2-2.3 Wave spectral from buoy data 25 Chapter 3 The Data Assimilation Scheme 26 3-1 Assimilation of significant wave height 29 3-1.1 Construction of an analyzed wave height field 29 3-1.2 Analysis of the wave spectrum 31 3-2 Assimilation of wave spectral from pitch-and-roll buoy 34 3-2.1 Spectral partition 34 3-2.2 Partition of buoy spectra 36 3-2.3 Update of wave spectra and wind field 36 3-3 Description of the simulation region 37 Chapter 4 Impact of Coastal Grid Assimilation or Far Field on Boundary Values 39 4-1 Verification of the wind field corrections 39 4-1.1 Time-limited growth of wind sea 39 4-1.2 Decay of the spectrum in absence of wind 43 4-1.3 Spectrum produced by a sudden change in wind direction 46 4-1.4 Considerations 49 4-2 Adjust the optimum parameter of OI-I 51 4-3 Verification of the results from the assimilation run of altimeter data 63 4-4 Discussions 68 Chapter 5 Impact of the Assimilation on the Wave Analysis and Forecast in the Coastal Region 70 5-1 Spectral observations from buoys 70 5-1.1 Observed parameters 70 5-1.2 Partition of buoy data 72 5-2 Adjust the optimum parameter of OI-P 72 5-2.1 Optimal the frequency and direction 72 5-2.2 Optimal the number of assumed stations 74 5-3 Verification of the results from the assimilation run of buoy data against buoy observation 75 5-4 Statistical results over the typhoon periods 84 5-4.1 Compare OI-P scheme with OI-I shceme 84 5-4.2 Statistical of the different assimilation scheme 86 5-4 Discussion 89 Chapter 6 Conclusions and Outlooks 91 6-1 Conclusions 91 6-2 Outlooks 92 References 93

    Battjes, J., and P. Janssen, Energy loss and set-up due to breaking of random waves, Proceedings of the 16th Coastal Engineering Conference, ASCE, Hamburg, Germany, 569-587, 1978.
    Barzel, G., and R.B. Long, Wave model fitting using the adjoint technique, Dynamics and Modelling of Ocean Waves, Cambridge University Press, Cambridge, UK, 447-453, 1994.
    Bauer, E., I.R. Young, and K. Hasselmann, Data assimilation using a Green's function approach, Dynamics and Modelling of Ocean Waves, Cambridge University Press, Cambridge, UK, 468-480, 1994.
    Bauer, E., K. Hasselmann, I.R. Young, and S. Hasselmann, Assinilation of wave data into the wave model WAM using an impulse response function method, Journal of Geophysical Research, 101, C2, 3801-3816, 1996.
    Bender, L., Modification of the physics and numerics in a third-generation ocean wave model, Journal of Atmospheric and Oceanic Technology, 13, 3, 726-750, 1996.
    Bidlot, J.R., F. Ovidio, and D. Van den Eynde, Validation and improvement of the quality of the operational wave model MU-WAVE by the use of ERS-1 satellite data, Report MUMM/T3/AR04, MUMM, Brussels, Belgium, 53 pp., 1995.
    Booij, N., and L.H. Holthuijsen, Propagation of ocean waves in discrete spectral wave models, Journal of Computational Physics, 68, 307-326, 1987.
    Booij, N., R.C. Ris, and L.H. Holthuijsen, A third-generation wave model for coastal regions, Part I, Model description and validation, Journal of Geophysical Research, 104, C4, 7649-7666, 1999.
    Bouws, E., and G. Komen, On the balance between growth and dissipation in an extreme depth-limited wind-sea in the southern North Sea, Journal of Physical Oceanography, 13, 9, 1653-1658, 1983.
    Breivik, L.A., M. Reistad, and H. Schyberg, Assimilation of ERS SAR wave spectra in a numerical wave prediction model, DNMI Research Report 31, ISSN 0332-9879, 36 pp., 1996.
    Brüning, C., and S. Hasselmann, Extraction of wave spectra from ERS-1 SAR wave mode spectra by an improved SAR inversion scheme, Proceeding of First ERS-1 Pilot Project Workshop, Toledo, Spain, European Space Agency Specification Publication, ESA SP-365,45-48, 1994.
    Burgers, G., V.K. Makin, G. Quanduo, and M.M. De Lash Heras, Wave data assimilation for operational wave forecasting at the North Sea, 3rd International Workshop on Wave Hindcasting and Forecasting, Montreal, Canada, 202-209, 1992.
    Collins, J., Predictions of shallow water spectra, Journal of Geophysical Research, 77, 2693-2707, 1972.
    De Las Heras, M.M., G. Burgers, and P.A.E.M. Janssen, , Variational wave data assimilation in a third generation wave model, Journal of Atmospheric and Oceanic Technology, 11, 1305-1369, 1994.
    De Valk, C.F., and C.J. Calkoen, Wave data assimilation in a third generation wave prediction model for the North Sea, Report, Delft Hydraulic Laboratory, Delft, Netherlands, 1989.
    De Valk, C.F., A wind and wave data assimilation scheme based on the adjoint technique, Dynamics and modelling of ocean waves, Cambridge University Press, Cambridge, UK, 460-468, 1994.
    Esteva, D.C., Evaluation of preliminary experiments assimilating Seasat significant wave heights into a spectral wave model, Journal of Geophysical Research, 14099-14106, 1988.
    Francis, P.E., and R.A. Stratton, Some experiments to investigate the assimilation of Seasat altimeter wave height data into a global wave model. The Quarterly Journal of the Royal Meteorological Society, 116, 1225-1251, 1990.
    Golding, B., A wave prediction system for real time sea state forecasting, The Quarterly Journal of the Royal Meteorological Society, 109, 393-416, 1983.
    Günther, H., P. Lionello, and B. Hanssen, The impact of the ERS-1 altimeter on the wave analysis and forecast, Report GKSS 93/E/44, GKSS Foreschungszentrum Geesthacht, Geesthacht, Germany, 56 pp., 1993.
    Hasselman, K., On the nonlinear energy transfer in a gravity-wave spectrum, part 1: General theory, Journal of Fluid Mechanics, 12, 481-500, 1963.
    Hasselmann, K., T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D.J. Olbers, K. Richter, W. Sell, and H. Walden, Measurements of wind−wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Deutsche Hydrographische Zeitschrift. Supplement, 12, A8, 1973.
    Hasselman, K., On the spectral dissipation of ocean waves due to whitecapping, Boundary-Layer Meteorology, 6, 107-127, 1974.
    Hasselman, S., K. Hasselman, J. Allender, and T. Barnett, Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the non-linear energy transfer for application in wave models, Journal of Physical Oceanography, 15, 1378-1391, 1985.
    Hasselmann, K., S. Hasselmann, E. Bauer, C. Bruening, S. Lehner, H. Graber, and P. Lionello, Development of a satellite SAR image spectra and altimeter wave height data assimilation system for ERS-1, Report 19, Max-Planck Institut für Meteorologie, Hamburg, Germany, 157 pp., 1988.
    Hasselmann, S., C. Brüning, and P. Lionello, Towards a generalized optimal interpolation method for the assimilation of ERS-1 SAR retrieved wave spectra in a wave model, Proceeding of Second ERS-1 Symposium, Hamburg, Germany, ESA SP-361, 21-25, 1994.
    Hasselmann, S., C. Brüning, K. Hasselmann, and P. Heimbach, An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra, Journal of Geophysical Research, 101, C7, 16615-16629, 1996.
    Hasselmann, S., P. Lionello, and K. Hasselmann, An optimal interpolation scheme for the assimilation of spectral wave data, Journal of Geophysical Research, 102, C7, 15823–15836, 1997.
    Hersbach, H., Application of the adjoint of the WAM model to inverse wave modelling, Journal of Geophysical Research, 103, C5, 10469-10487. 1998.
    Hollingsworth, A., Objective analysis for numerical weather prediction, Journal of the Meteorological Society of Japan, WMO/IUGG/MWP Symposium Specification Issue, 11-60, 1986.
    Holthuijsen, L.H., and S. De Boer, Wave forecasting for moving and stationary targets, Computer Modelling in Ocean Engineering, Balkema, Rotterdam, 231-234, 1988.
    Holthuijsen, L.H., N. Booij, M. Van Endt, S. Caires, and C. Guedes Soares, Assimilation of buoy and satellite data in wave forecasts with integral control variables, Journal of Marine Systems, 13, 21-31, 1997.
    Janssen, P.A.E.M., G.J. Komen, and W.J.P. De Voogt, An operational coupled hybrid wave prediction model, Journal of Geophysical Research, 89, 3635-3654, 1984.
    Janssen, P.A.E.M., P. Lionello, M. Reistad, and A. Hollongsworth, Hindcasts and data assimilation studies with the WAM model during the Seasat period, Journal of Geophysical Research, 94, C1, 973-993, 1989.
    Janssen, P.A.E.M., Wave-induced stress and the drag of air flow over sea waves, Journal of Physical Oceanography, 19, 6, 745-754, 1989.
    Janssen, P.A.E.M., Quasi-linear theory of wind-wave generation applied to wave forecasting, Journal of Physical Oceanography, 21, 11, 1631-1642, 1991.
    Jonsson, I., Wave boundary layers and friction factors, in Coastal Engineering, Proceedings of the 10th International Conference, 127-148, 1966.
    Kitaigorodskii, S. A., Application of the theory of similarity to the analysis of wind-generated water waves as a stochastic process, Bull, The Academy of Sciences of the USSR, Geophysical Serial, 1, 73 pp., 1962.
    Komen, G., S. Hasselmann, and K. Hasselmann, On the existence of a fully developed wind-sea spectrum, Journal of Physical Oceanography, 14, 1271-1285, 1984.
    Komen, G.J., Introduction to wave models and assimilation of satellite data in wave model in the use of satellites in climate models, ESA Scientific Publication SP-221, 21-25, 1985.
    Komen, G.J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P.A.E.M., Janssen, Dynamics and modeling of ocean waves, Cambridge University Press, Cambridge, 532 pp., 1994.
    Komen, G.J., A.C. Voorrips, and J.P.T. Hersbach, Assimilation of satellite measurements in a sea state forecasting model, Proceeding of the Symposium on Operational Oceanography and Satellite Observation, Biarritz, France, 93-103, 1996.
    Li, C., and M. Mao, Spectral modelling of typhoon-generated waves in shallow water, Journal of Hydraulic Research, 30, 611-622, 1992.
    Lionello, P. and P.A.E.M. Janssen, Assimilation of altimeter measurements to update swell spectra in wave model, Proceeding of the International Symposium on the Assimilation of Observations in Meteorology and Oceanography, World Meteorological Organization, Clermond-Ferrand, France, 241-246, 1990.
    Lionello, P., H. Günther, and P.A.E.M. Janssen, Assimilation of altimeter data in a global third generation wave model, Journal of Geophysical Research, 97, C9, 14453-14474, 1992.
    Lionello, P., H. Günther, and B. Hansen, A sequential assimilation scheme applied to global wave analysis and prediction, Journal of Marine Systems, 6, 87-107, 1995.
    Long, R.B., and K. Hasselmann, A variational technique for extracting directional spectra from multi-component wave data, Journal of Physical Oceanography, 9, 373-381, 1979.
    Longuet-Higgins, M.S., D.E. Cartwright, and N.D. Smith, Observations of the directional spectrum of sea waves using the motions of a floating buoy, Ocean Wave Spectra, Prentice-Hall, Englewood Cliffs, New Jersey, 111-136, 1963.
    Luo, W., and J. Monbaliu, Effects of the bottom friction formulation on the energy balance for gravity waves in shallow water, Journal of Geophysical Research, 99, C9, 18501-18511, 1994.
    Lygre, A., and H.E. Krogstad, Maximum entropy estimation of the directional distribution in ocean wave spectra, Journal of Physical Oceanography, 16, 2052-2060, 1986.
    Madsen, O., Y. Poon, and H. Graber, Spectral wave attenuation by bottom friction: experiments, in Coastal Engineering, Proceedings of the 21st International Conference, 492-504, 1988.
    Madsen, O., and M. Rosengaus, Spectral wave attenuation by bottom friction: theory, in Coastal Engineering, Proceedings of the 21st International Conference, 849-857, 1988.
    Mastenbroek, C., V.K. Makin, A.C. Voorrips, and G.J. Komen, Validaton of ERS-1 altimeter wave height measurements and assimilation in a North Sea wave model, Global Atmosphere and Ocean System, 2, 143-161, 1994.
    Ou, S.H., T.W. Hsu, J.M. Liao, Y.L. Chen, and L.C. Hsu, A study of data assimilation on nearshore wind wave hindcasting, Proceedings of the 26th Ocean Engineering Conference in Taiwan, 206-213, 2004
    Phillips, O.M., The equilibrium range in the spectrum of wind-generated waves, Journal of Fluid Mechanics, 4, 426-434, 1958.
    Ris, R., Spectral modeling of wind waves in coastal areas, Ph.D. thesis, Delft University of Technology, the Netherlands, 160 pp., 1997.
    Snyder, R.L., F.W., Dobson, J.A., Elliot, and R.B., Long, Array measurements of atmospheric pressure fluctuations above surface gravity waves, Journal of Fluid Mechanics, 102, 1-59, 1981.
    SWAMP Group: Allender, J.H., T.P. Barnett, L. Bertotti, J. Bruinsma, V.J. Cardone, L. Cavaleri, J. Ephraums, B. Golding, A. Greenwood, J. Guddal, H. Günther, K. Hasselmann, S. Hasselmannm, P. Joseph, S. Kawai, G.J. Komen, L. Lawson, H. Linne, R.B. Long, M. Lybanon, E. Maeland, W. Rosenthal, Y. Toba, T. Uji, and W.J.P. De Voogt, Sea Wave Model Project (SWAMP), An intercomparison study of wind wave prediction models, Part 1: Principal results and conclusions, Ocean Wave Modelling, Plenum Press, New York, 256 pp., 1985.
    Snyder, R., F. Dobson, J. Elliott, and R. Long, Array measurements of atmospheric pressure fluctuations above surface gravity waves, Journal of Fluid Mechanics, 102 1-59 pp., 1981.
    Thomas, J., Retrieval of energy from measured data for assimilation into a wave model, Report H1861, Delft Hydraulic, Delft, 1988.
    Tolman, H., A third-generation model for wind waves on slowly varying unsteady, and inhomogeneous depths and current, Journal of Physical Oceanography, 21, 782-797 pp., 1991.
    Voorrips, A.C., V.K. Makin, and S. Hasselmann, Assimilation of wave spectra from pitch-and-roll buoys in a North Sea wave model, Journal of Geophysical Research, 102, C3, 5829-5849, 1997.
    Voorrips, A.C., and C. De Valk, A comparison of two operational wave assimilation methods, Royal Netherlands Meteorological Institute (KNMI), The Global Atmosphere and Ocean System, 46 pp., 1997.
    WANDI group, The WAM model – a third generation ocean wave prediction model, Journal of Physical Oceanography, 18, 1775-1810, 1988.
    Weber, N., Bottom friction for wind seas and swell in extreme depth-limited situations, Journal of Physical Oceanography, 21, 148–172, 1991.
    Young, I.R., and R.M. Gorman, Measurements of the evolution of ocean wave spectra due to bottom friction, Journal of Geophysical Research, 100, C6 10987-11004, 1995.
    Young, I., and G. Van Vledder, A review of the central role of nonlinear interactions in wind-wave evolution, Philosophical Transactions The Royal Society, 342, 505-524, 1993.
    Zambresky, L., A verification of the global WAM model December 1987-November 1988, Technical Report 63, European Center for Medium-Range Weather Forecasts, Reading, England, 86 pp., 1989.

    下載圖示 校內:2010-09-09公開
    校外:2010-09-09公開
    QR CODE