簡易檢索 / 詳目顯示

研究生: 林祐任
Lin, Yu-Jen
論文名稱: 動態輪廓線模型及其在醫學3D影像上之應用
An Active Contour Model and Its Applications in Medical 3D Imaging
指導教授: 陳立祥
Chen, Lih-Shyang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 72
中文關鍵詞: 影像處理動態輪廓線
外文關鍵詞: Active contour model, image processing
相關次數: 點閱:78下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物件輪廓線的取得在影像處理中占極重要的角色,且輪廓線取得的準確性與方便性,也是決定一影像處理系統好壞的重要因素。所謂的動態輪廓線模型,係指由系統或使用者給定初始輪廓線,然後再經由一變形演算法將輪廓線形變(Deformation)至正確輪廓線的位置上,這種取得輪廓線的方式,不但方便而且準確度也很高。
    本論文整理了各種動態輪廓線模型,並且以離散動態輪廓線模型(Discrete Dynamic Contour Model)為基礎,設計了一套新的動態輪廓線模型。將傳統動態輪廓線模型所不足之處,如準確性及效率等方面加以改良。在新的模型之中,我們加強了影像前處理的部份,以減少變形過程中的不確定性,並讓影像中的物件邊緣突顯出來;另外在變形的過程中,利用線段截取的觀念,加速變形的過程,之後再進入評估步驟,將不合理的輪廓線片段重新做一次前處理,變形的步驟,直至通過評估為止。

    A contour extraction plays an important role in image segmentation. A convenient method to obtain accurate contours is one of the key features of robust image processing system. The Active Contour Model was proposed to segment an object correctly in an effective and efficient manner. In this model, an initial contour is given first and then deforms according to a set of defined forces to obtain the final result.
    In this thesis, we study several different active contour models, and designed a new active contour model based on Discrete Dynamic Contour Model. We improve the traditional active contour model’s drawback in terms of accuracy and performance. In the new active contour model, we enhance the image preprocess to reduce the uncertainty in deformation step, and emphasize the object edge response. In the deformation step, we use the concept of segment extraction to accelerate the deformation perform. Then, in the evaluation step, we eliminate the unreasonable contour segments and repeat the image reprocess and deformation steps over and over again until the evaluation result is acceptable.

    圖 目 錄 - 3 - 1. Introduction - 5 - 1.1. The concept of Active contour model - 5 - 1.1.1. 蛇狀模型 - 7 - 1.1.2. 幾何形變模型 - 8 - 1.1.3. 離散動態輪廓線模型 - 9 - 2. Architecture of ACM system - 10 - 2.1. Preprocess - 10 - 2.2. ACM Deformation - 11 - 2.3. Evaluation - 11 - 3. Preprocess - 12 - 3.1. Preface - 12 - 3.2. Problems - 13 - 3.2.1. Different Image source - 13 - 3.2.2. Various image feature - 14 - 3.2.3. Contour sources - 15 - 3.2.4. Effects on ACM system - 17 - 3.3. The solution design - 19 - 3.3.1. Contour source check - 20 - 3.3.2. Noise filter:去除雜訊 - 22 - 3.3.3. Gray level image process - 22 - 3.3.4. Edge detector - 31 - 3.3.5. Gradient map - 37 - 3.4. Architecture of Preprocess - 41 - 3.5. Result of preprocess - 42 - 3.6. 附: - 43 - 3.6.1. 磁共振造影術 (Magnetic Resonance Imaging, MRI) - 43 - 3.6.2. 電腦斷層攝影 (Computed Tomography, CT) - 43 - 4. ACM procedure - 44 - 4.1. ACM concept - 44 - 4.2. Deformation issues - 45 - 4.2.1. Traditional force model in ACM - 45 - 4.2.2. Improvement model - 47 - 4.3. Deformation problem cases & solution - 54 - 4.4. Deformation algorithm - 56 - 5. Evaluation - 58 - 5.1. Vertex level: - 59 - 5.2. Segment level - 60 - 5.3. Contour level - 64 - 5.4. Evaluation results - 64 - 6. The review of ACM system - 66 - 7. Conclusions - 69 - 7.1. Preprocess improvement - 69 - 7.2. Apply in medical image slice - 70 - 7.3. Contour knowledge - 70 - Reference: - 71 -

    A. Y, Jr., S. K and A. K, P. O, and A. T, “A Geometric Snake Model for Segmentation of Medical Imagery”, IEEE Transactions on Medical Imaging, Vol. 16, NO.2, April 1997.

    J. F. Canny, “A computational approach to edge detection, “IEEE Trans, Pattern Analysis and Machine Intelligence, Vol. 9, pp. 679-698, Nov. 1986.

    L. D. Cohen, “Note: On Active Contour Models and Ballons”, Image Understanding, Vol. 53, No.2, March, pp.211-218, 1991.

    R. C. Gonzalez and R. E. Woods, digital Image Processing, Addison-Wesley Publishing Company, 1993.

    M. K, A. W, and D. T, “ Snake: Active Contour Models,” International Journal of Computer Vision, pp.321-331,1988.

    S. L and M. A. Viergever, “A Discrete Dynamic Contour Model,” IEEE Trans. On Medical Imaging, Vol 14, No. 1, pp. 12-24, Mar. 1995

    “Edge detection and image segmentation: Two sides of the same coin,” Proc.6th IEEE Int. Conf. Fuzzy Systems. pp.1063-1068,1997.

    J.C, Bezdek,R.C, “A Geometric Approach to Edge Detection”, IEEE trans on Fuzzy systems,Vol.6, No.1, February 1998.

    H. C, A. L, “A Fast Filtering Algorithm for Image Enhancement”, IEEE Trans, Medical Imaging, Vol. 13, NO.3, September 1994.

    下載圖示 校內:2009-08-29公開
    校外:2010-08-29公開
    QR CODE