| 研究生: |
顏家駿 Yan, Chia-Chun |
|---|---|
| 論文名稱: |
永磁同步馬達磁鐵健康狀況線上監測系統 Online Magnets Fault Monitoring System for Permanent Magnet Synchronous Motors |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 共同指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 表面貼磁式永磁同步馬達 、支援向量機 、磁鐵異常 、硬體在環迴路系統 |
| 外文關鍵詞: | Permanent Magnet Synchronous Motor, SVM, Magnets Fault, HIL |
| 相關次數: | 點閱:106 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自動化推廣至今已數十載,永磁同步馬達因其高效率、高功率密度、高轉矩密度等優點,已廣泛被運用在工業之產線上。近年來,智慧工廠的概念被提出,其中一項概念為異常自動偵測與修復,異常偵測通過預先識別即將發生的故障,讓使用者在嚴重的後果發生前做好預防措施。基於上述背景,本論文提出永磁同步馬達磁鐵健康狀況線上監測系統,該系統包含一適應性線上參數調整法與支援向量機(SVM),能於馬達運行中判斷磁鐵的健康狀況。首先以適應性線上調整法調整出反電動勢常數,再結合反電動勢常數與其他能在驅動器取得的資訊如電流、轉速等,並以支援向量機做判斷方法。本論文實驗以硬體在環迴路系統(Hardware-in-the-loop, HIL)當成實驗馬達的載具,使用TMS320F28335控制板做驅動,以取得實驗所需之資訊,並藉實驗結果證實本研究所提出方法之有效性。
Industrial automation has been promoted for several decades, and permanent magnet synchronous motor has been widely used in industrial production lines due to its high efficiency, high power density and high torque density. Moreover, the concept of smart factory has been proposed in recent years. One of the important aspects of this concept is automatic detection and repair of anomalies. By detecting the faults which will happen in advance, the user can take precautions before serious consequences occur. Based on the above background, this paper proposes a permanent magnet synchronous motor magnet health condition online monitoring system. First, the back electromotive force constant is adjusted using online adaptive parameter adjustment method, and then combines it with other information which can be obtained directly in the motor driver such as current, speed, etc. Second, a support vector machine is applied as a judging method to judge the healthy condition of the magnet during motor operation. In this paper, the hardware-in-the-loop (HIL) is used as the experimental carrier which substitute the real motor because of experimental feasibility. HIL is driven by the chip TMS320F28335 to obtain the necessary information needed for the experiment. Last, the experimental results confirm the effectiveness of the method proposed in this paper.
[1] H.Kagermann, W.D. Lukas and W. Wahlster, “Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen Revolution .” Apr.1, 2011
[2] 呂明山, 工業4.0時代來臨:機械工業4.0, 科學發展, 第544期, 6-12頁, 2018年
[3] J. R. Riba, J. A. Rosero, A. Garcia, and L. Romeral, “Detection of demagnetization faults in permanent-magnet synchronous motor sunder nonstationary conditions,” IEEE Trans. Magn., vol. 45, no. 7, pp. 2961–2969, 2009.
[4] J. R. Riba, A. Garcia, and L. Romeral, “Demagnetization diagnosis in permanent magnet synchronous motors under non-stationary speed conditions,” Electr. Power Syst. Res., vol. 80, no. 10, pp. 1277–1285, 2010.
[5] W. Le Roux, R. G. Harley, and T. G. Habetler, “Detecting rotor faults in permanent magnet synchronous machines,” in Proc. 4th IEEE Int. Symp. Diagnostics for Electric Machines, Power Electronics and Drives, 2003, pp. 198–203.
[6] W. Li, A. Li, and H. Wang, “Anisotropic fracture behavior of sintered rare earth permanent magnets,” IEEE Trans. Magn., vol. 41, no. 8, pp.2339–2342, 2005.
[7] S. Yu and R. Tang, “Electromagnetic and mechanical characterization of noise and vibration in permanent magnet synchronous machines,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1335–1338, 2006.
[8] K. C. Kim, S. B. Lim, D.H. Koo, and J. Lee, “The shape optimization of permanent magnet for permanent magnet synchronous motor considering partial demagnetization,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3485–3487, 2006.
[9] J.C. Urresty, J.-R. Riba, and L. Romeral, "A Back-emf Based Method to Detect Magnet Failures in PMSMs," IEEE Transactions on Magnetics, vol. 49, no. 1, pp. 591-598, 2013
[10] M. Zafarani, T. Goktas, and B. Akin, "A Comprehensive Analysis of Magnet Defect Faults in Permanent Magnet Synchronous Motors," IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 3753-3762, 2016.
[11] Corinna Cortes, Vladimir Vapnik, “Support-Vector Networks,” Machine Learning, vol20, no.3, pp273-297, 1995.
[12] D. Meyer, F. Leisch, and K. Hornik, "The support vector machine under test," (in English), Neurocomputing, vol. 55, no. 1-2, pp. 169-186, 2003.
[13] A. G. Espinosa, J. A. Rosero, J. Cusido, L. Romeral, and J. A. Ortega, "Fault Detection by Means of Hilbert–Huang Transform of the Stator Current in a PMSM with Demagnetization," IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 312-318, 2010.
[14] Sevinc, A.,” A Full Adaptive Observer for DC Servo Motors”, Turk J Elec Engin, vol.11, no.2, pp. 117-130, 2003
[15] Vladimir N. Vapnik, The Nature of Statistical Learning Theory, 2 nd ed. Springer , 1995.
[16] D.Klein, “Lagrange Multipliers without Permanent Scarring”, Available: https://people.eecs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf
[17] R. Fletcher , “Practical Methods of Optimization”, 2nd ed., Wiley, 1987
[18] Scikit-Learn. Available: http://scikit-learn.org/
[19] 凱登智動科技, “MR series說明書”, Gathertech intelligent automation CO., LTD, 2016.
[20] Duane C. Hanselman, "Brushless Permanent Magnet Motor Design," Mcgraw-Hill, Inc, March 2003
[21] 劉昌煥, 「交流電機控制」, 東華書局, 民國95年9月四版
校內:2022-08-31公開