簡易檢索 / 詳目顯示

研究生: 林峻良
Lin, Chun-Liang
論文名稱: 應用於彈性工作排程的最佳化基因演算法
An Optimal Genetic Algorithm for Flexible Job-shop Scheduling Problem
指導教授: 賴源泰
Lai, Yen-Tai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 36
中文關鍵詞: 彈性工作排程問題NP-hard基因演算法
外文關鍵詞: Flexible Job-shop Scheduling Problem, NP-hard, Genetic Algorithm
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 彈性工作排程問題是傳統工作排程問題的一種衍伸問題,而這些問題是有名的NP-hard問題。基因演算法是基於“適者生存”這種觀念的一種啟發式演算法,並且廣泛地應用在彈性工作排程問題上。
    我們提出了一個改良的基因演算法,採用不同的策略來產生初始群族。此外,我們提出兩種有效的交配及突變運算子以便更有效的產生染色體。實驗結果顯示我們提出的基因演算法比以往的基因演算法來得有效率。

    The Flexible Job-shop Scheduling Problem is a generation of the classical job-shop scheduling problem, and this kind of problems is a well-known NP-hard problem. Genetic Algorithm is one of heuristic algorithms which is based on concept of “the survival of the fittest ”and widely used for solving FJSP.
    We propose an improved genetic algorithm that integrates different strategies for generating the initial population. In addition, two effective crossover and mutation operators are proposed to adapt the chromosome. Experiment results show that the proposed GA is more efficient than other GAs.

    Chapter 1 Introduction 1 1.1 The Scheduling Problem 1 1.2 Motivation 2 1.3 Thesis Organization 3 Chapter 2 Flexible Job-shop Scheduling Problem 4 2.1 Problem Statement 4 2.2 Disjunctive Graph 5 Chapter 3 Genetic Algorithm 8 3.1 Heuristic Approaches for the Scheduling Problems 8 3.2 The Properties of Genetic Algorithm 9 3.3 The Framework of Genetic Algorithm 10 3.3.1 Gene Coding and Initial Population 10 3.3.2 Fitness Evaluation 11 3.3.3 Selection Mechanisms 12 3.3.4 Crossover Mechanism 13 3.3.5 Mutation Mechanism 14 3.3.6 End Conditions 15 3.3.7 The Flowchart of Genetic Algorithm 15 Chapter 4 Our Proposed GA for FJSP 17 4.1 Gene Coding 19 4.2 Initial Population 20 4.3 Fitness Evaluation and Selection Mechanisms 25 4.4 Offspring Generation 26 4.4.1 Crossover Operator 27 4.4.2 Mutation Operator 29 4.5 Stop Criterion and Full Flowchart 30 Chapter 5 Experimental Results 32 Chapter 6 Conclusions 34 References 35

    [1]Garey MR, Johnson DS, Sethi R, “The complexity of flowshop and jobshop scheduling,” Mathematics of Operations Research 1976;1:117–29.
    [2]E.Balas, “Machine scheduling via disjunctive graphs: an implicit enumeration algorithm,” Operations Research, vol. 17, pp. 941-957, 1969.
    [3]Pinedo M., “Scheduling: theory, algorithms and systems,” Englewood cliffs, NJ: Prentice-Hall; 2002.
    [4]Feige U., Scheideler C, “Improved bounds for acyclic job shop scheduling,” Proceedings of the 30th annual ACM symposium on the theory of computing (STOC ’98); 1998. p. 624–33.
    [5]Jansen K, Mastrolilli M, Solis-Oba R, “Approximation algorithms for Flexible Job Shop Problems,” Lecture notes in computer science, vol.1776. Proceedings of the fourth Latin American symposium on theoretical informatics; Berlin: Springer. 2000. p. 68–77.
    [6]Brandimarte P, “Routing and scheduling in a flexible job shop by tabu search,” Annals of Operations Research 1993;41:157–83.
    [7]Paulli J, “A hierarchical approach for the FMS scheduling problem,” European Journal of Operational Research 1995;86(1):32–42.
    [8]Barnes JW, Chambers JB, “Flexible Job Shop Scheduling by tabu search,” Graduate program in operations research and industrial engineering.Technical Report ORP 9609, University of Texas, Austin; 1996. _http://www.cs.utexas.edu/users/jbc/_.
    [9]Vaessens RJM, Aarts EHL, Lenstra JK, “Job Shop Scheduling by local search,” COSOR Memorandum 94-05. Eindhoven University; 1994.
    [10]Dauzere-Peres S, Paulli J, “An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu.search,” Annals of Operations Research 1997;70:281–306.
    [11]Hurink J, Jurish B, Thole M, “Tabu search for the job shop scheduling problem with multi-purpose machines,” OR-Spektrum 1994;15:205–15.
    [12]Mastrolilli M, Gambardella LM, “Effective neighbourhood functions for the flexible job shop problem,” Journal of Scheduling 1996;3:3–20.
    [13]Chen H, IhlowJ, Lehmann C, “A genetic algorithm for flexible Job-shop scheduling,” IEEE international conference on robotics and automation, Detroit; 1999. p. 1120–5.
    [14]Jia HZ, Nee AYC, Fuh JYH, Zhang YF,” A modified genetic algorithm for distributed scheduling problems,” International Journal of Intelligent Manufacturing 2003;14:351–62.
    [15]Ho NB, Tay JC,” GENACE: an efficient cultural algorithm for solving the Flexible Job-Shop Problem,” IEEE international conference on robotics and automation 2004;1759–66.
    [16]Kacem I, Hammadi S, Borne P, “Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems”, IEEE Transactions on Systems, Man, and Cybernetics, Part C 2002;32(1):1–13.
    [17]J. H. Holland, “Adaption in Natural and Artificial Systems,” Cambridge, MA: The M.I.T.Press, 1975.
    [18]Lee KM, Yamakawa T, Lee KM, “A genetic algorithm for general machine scheduling problems,” International Journal of Knowledge-Based Electronic 1998;2:60–6.
    [19]F. Pezzella, G. Morganti, G. Ciaschetti, “A genetic algorithm for the Flexible Job-shop Scheduling Problem”, Computers & Operations Research, 2008, 35(2008). 3202-3212

    無法下載圖示 校內:2021-07-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE