| 研究生: |
黃奕瑋 Huang, Yi-Wei |
|---|---|
| 論文名稱: |
直流-直流降壓轉換器的快速負載暫態響應技術 Fast Load-Transient Response Techniques for DC-DC Buck Converters |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 降壓 、校正 、電容電流感測器 、直流-直流 、快速暫態 、混合式 、負載暫態響應 、多相位 、電源轉換器 、電源管理 |
| 外文關鍵詞: | buck, calibration, capacitor-current sensor, dc-dc, fast-transient, hybrid, load-transient response, multiphase, power converter, power management |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分析一項與提出二項直流-直流降壓轉換器的快速負載暫態響應技術,含分析先前最先進的輸出電容電流偵測器校正技術,提出背景式電容電流偵測器校正技術與補償電流源校正技術,共實現三個晶片。
直流-直流降壓轉換器須具備快速負載暫態響應,以對負載供電並滿足效能與能源效率的需求,當大且快的負載電流暫態發生時,轉換器輸出電壓過衝與下衝小且穩定時間短。輸出電容電流可立即反映步階上升/下降的負載電流,並可被用來精確控制功率開關的導通時間與關斷時間,以在一次開關動作即穩定輸出電壓,但輸出電容阻抗受製程、輸出電壓準位、溫度與老化影響,使輸出電容電流偵測器不準確,可能使負載暫態響應變慢。本論文探討先前最先進的輸出電容電流偵測器校正技術:降低切換頻率讓輸出電容與電容電流偵測器的阻抗分別被電感、電容與電阻支配,再校正讓二者的電感性、電容性與電阻性阻抗比例相同,使電容電流偵測器產生的電流與輸出電容電流呈比例;分析校正誤差對負載暫態響應的影響,並歸納此技術適用於前景校正。
本論文提出背景電容電流偵測器校正技術,以事件/週期性致能校正因應短期/長期的輸出電容阻抗變異,根據電容電流偵測器輸出偵測準穩態以觸發校正,若遭遇負載暫態或動態電壓調節可立即中斷校正,並在下次偵測到準穩態時繼續或重新開始校正。此外,不改變切換頻率即可偵測電容電流偵測器與輸出電容的阻抗不匹配並校正,以維持校正時的輸出電壓品質,包含穩態漣波與暫態抖動;量測效能與現有一流文獻的降壓轉換器比較,本成果在校正過程產生的額外輸出電壓穩態漣波與暫態抖動皆可忽略,校正時間較短,在快且大的負載暫態變動時輸出電壓下衝、過衝與穩定時間分別最接近其理論最小值。
為突破標準直流-直流降壓轉換器負載暫態響應速度的先天限制,本論文提出背景校正的暫態輸出電流穩定器,包含與輸出電感並聯的補償電流源及其校正電路,以快速地在負載電流變動時穩定輸出電壓,另包含一個背景校正電路,以確保補償電流在製程、電壓與溫度變異時仍可準確。量測結果顯示,在負載電流暫態變動0.45 A與1 A下,輸出電壓維持在其標稱值的1% 內,下衝與過衝小於18 mV,故穩定時間視為可忽略。與現有一流文獻比較,本成果達到最快負載暫態響應速度,輸出電壓過衝與下衝最小且穩定時間最短。
This dissertation analyzes one and proposes two fast load-transient response techniques for DC-DC buck converters, including an analysis of prior state-of-the-art capacitor-current-sensor (CCS) calibration technique, and proposals of a background CCS calibration technique and a transient output-current regulator (TOCR) with calibration. Three chips are implemented.
DC-DC buck converters featuring fast load-transient response is essential for powering loads to meet their performance and energy-efficiency requirements. Hence, when a large and rapid load-current Iload transient occurs, the converter’s output voltage VO has small undershoot VUS and overshoot VOS as well as short settling time tS. The output-capacitor current ICo can instantly reflect a step-up/down Iload transient, and then be used to precisely control the power-switch on-time and off-time to settle VO in a one on-off switching. However, the output capacitor’s impedance ZCo varies with fabrication process, different VO levels, temperature drifts, and aging, causing an inaccurate CCS thus potential slowdown of load-transient response. This dissertation discusses prior state-of-the-art CCS calibration, which decreases switching frequency to make ZCo and CCS’ impedance ZCs dominated by their respective inductive, capacitive, and resistive parts, calibrates ZCs to ensure the same ratio in the inductive, capacitive, and resistive parts of ZCs/ZCo. Thus, the CCS output current ICs emulates a scaled replica of ICo. This dissertation also analyzes the calibration error effects on load-transient response and concludes the calibration is suitable for foreground operation.
This dissertation proposes a background CCS calibration technique. This calibration is event/periodically enabled for short/long-term ZCo variations, activated when a quasi-steady state (QS) is detected according to ICs, interrupted by a load-transient or dynamic-voltage-scaling event, and reactivated in the next QS. Besides, this calibration identifies mismatches between ZCo and ZCs in steady state with an unaltered switching frequency and then calibrates ZCs, leading to maintained VO quality including steady-state ripples and transient fluctuations during calibration. Compared with other state-of-the-art buck converters, this work achieves less VO steady-state error and transient fluctuations during calibration, less calibration period, and VUS, VOS and tS closer to their respective theoretical minima.
To break the inherent limitation of load-transient response in standard dc-dc buck converters. This dissertation proposes a TOCR with background calibration. The TOCR includes a compensation current source (CompCS) in parallel with the output inductor to rapidly regulate VO during Iload transients, and a calibration circuit to ensure an accurate compensation current under process-voltage-temperature variations. Under 0.45-A and 1-A Iload transients, the measured VO remains within 1% of its nominal 1.8 V, with VUS and VOS both being less than 18 mV and a negligible tS. Compared with other state of the arts, this work achieves the fastest load-transient response with the smallest VUS/VOS and shortest ts.
[1] G. Gammie, A. Wang, M. Chau, S. Gururajarao, R. Pitts, F. Jumel, S. Engel, P. Royannez, R. L., H. Mair, J. Vaccani, G. Baldwin, K. Heragu, R. Mandal, M. Clinton, D. Arden, and U Ko, “A 45nm 3.5G baseband-and-multimedia application processor using adaptive body-bias and ultra-low-power techniques, ” in IEEE ISSCC Dig. Tech. Papers, Feb. 2011, pp. 386–387.
[2] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Broderson, “A dynamic voltage scaled microprocessor system,” IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1571–1580, Nov. 2000.
[3] M. K. Song, J. Sankman, and D. Ma, “A 6A 40MHz four-phase ZDS hysteretic DC-DC converter with 118mV droop and 230ns response time for a 5A/5ns load transient,” in ISSCC Dig. Tech. Papers, pp. 80–81, Feb. 2014.
[4] Y.-W. Huang, T.-H. Kuo, S.-Y. Huang, and K.-Y. Fang, “A four-phase buck converter with capacitor-current-sensor calibration for load-transient-response optimization that reduces undershoot/overshoot and shortens settling time to near their theoretical limits,” IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 552-568, Feb. 2018.
[5] T.-H. Kuo, Y.-W. Huang, and P.-Y. Wang, “Background capacitor-current-sensor calibration of DC-DC buck converter with DVS for accurately accelerating load-transient response,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2019, pp. 430-431.
[6] Y.-W. Huang and T.-H. Kuo, “A DC-DC buck converter with fixed-frequency background capacitor-current-sensor calibration for accurately accelerating load-transient response and maintaining output voltage quality during calibration,” will be submitted to IEEE J. Solid-State Circuits.
[7] 黃斯郁(2015)。可容忍大範圍輸出電容變異且最小化暫態抖動之前景式校正電容電流控制直流至直流轉換器。國立成功大學電機工程學系碩士論文。
[8] 方冠寓(2016)。具負載暫態響應最佳化與電容電流偵測器校正之四相降壓轉換器。國立成功大學電機工程學系碩士論文。
[9] 劉忠瑋(2019)。具快速負載暫態之背景式校正電容電流偵測四相降壓轉換器。國立成功大學電機工程學系碩士論文。
[10] A. Grenat, S. Pant, R. Rachala, and S. Naffziger, “Adaptive clocking system for improved power efficiency in a 28 nm x86-64 microprocessor,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 106–107.
[11] S.-H. Chien, T.-H. Hung, S.-Y. Huang, and T.-H. Kuo, “A monolithic capacitor-current-controlled hysteretic buck converter with transient-optimized feedback circuit,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2524–2532, Nov. 2015.
[12] S.-Y. Huang, K.-Y. Fang, Y.-W. Huang, S.-H. Chien, and T.-H. Kuo, “Capacitor-current-sensor calibration technique and application in a 4-phase buck converter with load-transient optimization,” in IEEE ISSCC Dig. Tech. Papers, Jan./Feb. 2016, pp. 228–229.
[13] C.-J. Shih, K.-Y. Chu, Y.-H. Lee, and K.-H. Chen, “Hybrid buck-linear (HBL) technique for enhanced dip voltage and transient response in load-preparation buck (LPB) converter,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2011, pp. 431–434.
[14] C. K. Teh, A. Suzuki, M. Yamada, M. Hamada, and Y. Unekawa, “A 3-phase digitally controlled DC-DC converter with 88% ripple reduced 1-cycle phase adding/dropping scheme and 28% power saving CT/DT hybrid current control,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 78–79.
[15] C. Huang and P. K. T. Mok, “A 100 MHz 82.4% efficiency package-bondwire based four-phase fully-integrated buck converter with flying capacitor for area reduction,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 2977–2988, Dec. 2013.
[16] P. Li, L. Xue, P. Hazucha, T. Karnik, and R. Bashirullah, “A delay-locked loop synchronization scheme for high-frequency multiphase hysteretic DC-DC converters,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3131–3145, Nov. 2009.
[17] B. Lee, M. K. Song, A. Maity, and D. B. Ma, “A 25 MHz 4-phase SAW hysteretic DC-DC converter with 1-cycle APC achieving 190 ns tsettle to 4 A load transient and above 80% efficiency in 96.7% of the power range,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 190–191.
[18] S. C. Huerta, A. Soto, P. Alou, J. A. Oliver, O. Garcia, and J. A. Cobos, “Advanced control for very fast DC-DC converters based on hysteresis of the Cout current,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 4, pp. 1052–1061, Apr. 2013.
[19] L. Chen and W.-H. Ki, “A 30MHz hybrid buck converter with 36mV droop and 125ns 1% settling time for a 1.25A/2ns load transient,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 188-189.
[20] J. S. Shor and K. Luria, “Miniaturized BJT-based thermal sensor for microprocessors in 32- and 22-nm technologies,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2860-2867, Nov. 2013.
[21] L. E. Wojewida, M. J. Hill, K. Radhakrishnan, and N. Goyal, “Use condition characterization of MLCCs,” IEEE Trans. Adv. Packag., vol. 32, no. 1, pp. 109-115, Feb. 2009.
[22] M. Sun, Z. Yang, K. Joshi, D. Mandal, P. Adell, and B. Bakkaloglu, “A 6 A, 93% peak efficiency, 4-phase digitally synchronized hysteretic buck converter with ±1.5% frequency and ±3.6% current-sharing error,” IEEE J. Solid-State Circuits, vol. 52, no. 11, pp. 3081-3094, Nov. 2017.
[23] M. Choi, C.-H. Kye, J. Oh, M.-S. Choo, and D.-K. Jeong, “A synthesizable digital AOT 4-phase buck voltage regulator for digital systems with 0.0054mm2 controller and 80ns recovery time,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2019, pp. 432-433.
[24] B. Lee, M. K. Song, A. Maity, and D. B. Ma, “A 25-MHz four-phase SAW hysteretic control DC-DC converter with 1-cycle active phase count,” IEEE J. Solid-State Circuits, vol. 54, no. 6, pp. 1755-1763, June 2019.
[25] Y.-W. Huang, T.-Y. Yu, and T.-H. Kuo, “Transient output-current regulator with background calibration applied to a buck converter for fast load-transient response,” submitted to IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2020.
[26] 尤亭又(2018)。具快速負載暫態之混合式直流-直流降壓轉換器。國立成功大學電機工程學系碩士論文。
[27] Y. Liu, C. Zhan, and W.-H. Ki, “A fast-transient-response hybrid buck converter with automatic and nearly-seamless loop transition for portable applications,” in IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sept. 2012, pp. 165-168.
[28] Y.-W. Huang, Y.-Y. Hung, T.-H. Kuo, and C.-W. Chiang, “A load-transient-enhanced wireless power transfer system via transmitter-side regulator,” in IEEE Int. Conf. Electron Devices Solid-State Circuits (EDSSC), June 2014, pp. 1-2.