簡易檢索 / 詳目顯示

研究生: 蘇奕維
Su, Yi-Wei
論文名稱: 應用隨機森林於三相感應馬達轉子及軸承故障分析
Faults Analysis of Rotor and Bearing for Three Phase Induction Motor Based on Random Forest
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 77
中文關鍵詞: 感應馬達轉子軸承故障分析加速規振動隨機森林
外文關鍵詞: Induction motor, rotor, bearing, faults analysis, accelerometer, vibration, random forest
相關次數: 點閱:103下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在感應馬達重大故障發生前分析出瑕疵,應用隨機森林辨識三相感應馬達之轉子與軸承故障。利用加速規取得振動訊號後,透過快速傅立葉轉換將訊號從時域轉變為頻域。獲得之訊號於特徵建立後利用標準化及主成份分析法處理並當作輸入資料給隨機森林進行辨識。本研究中,製作了轉子及軸承的故障類型,分類器用來辨識轉子及軸承故障之狀況,以一20馬力三相感應馬達為演示。實驗結果中,轉子及軸承故障分析之最佳辨識率與袋外錯誤率分別為100%、0.35%及99.33%、1.00%。高的辨識率不僅優於其他文獻之方法且證明隨機森林分類器用於馬達故障分析之可行性。

    In this thesis, the main purpose is to analyze defects in an induction motor before significant faults occur. The rotor faults and the bearing faults of a three-phase induction motor are recognized by using the random forest. The vibration signals are obtained from the accelerometers and transferred from the time domain to the frequency domain via fast Fourier transform. The obtained signals are processed by standardization and principal component analysis after the feature construction and used as input data to the random forest for recognizing. In this study, the types of rotor fault and bearing fault are created. The classifier is used to recognize the types of rotor fault and bearing fault. And, a demonstration on a 20 hp three-phase induction motor is developed. In the experimental results, the best recognition rate and out-of-bag (OOB) error rate of faults analysis of the rotor and the bearing are 100% and 0.35%, 99.33% and 1.00%, respectively. The high recognition rate is superior to the analysis method of the other literature and shows the high feasibility of the random forest classifier in motor faults analysis.

    摘 要-------------------------------------------I Abstract---------------------------------------II 誌 謝-----------------------------------------III Contents---------------------------------------IV List of Figures--------------------------------VI List of Tables-------------------------------VIII Chapter 1 Introduction--------------------------1 1.1 Background and Motivation-------------------1 1.2 Organization of Thesis----------------------4 Chapter 2 Theoretical Analysis------------------5 2.1 Fast Fourier Transform----------------------5 2.2 Basic Theory of Fast Fourier Transform------6 2.2.1 Aliasing Effect---------------------------8 2.2.2 Picket-fence Effect-----------------------9 2.2.3 Leakage Effect---------------------------10 2.3 Principal Component Analysis---------------11 2.4 Random Forest------------------------------13 2.4.1 Decision Tree----------------------------13 2.4.2 Basic Theory of Random Forest------------16 Chapter 3 Experimental Method------------------19 3.1 Measurement System-------------------------19 3.2 Types of Rotor Fault-----------------------23 3.3 Types of Bearing Fault---------------------24 3.4 Faults Analysis----------------------------25 3.5 Data Pre-processing------------------------26 3.5.1 Feature Construction---------------------27 3.5.2 Standardization--------------------------30 3.5.3 Feature Extraction-----------------------31 3.6 Training and Testing Phase-----------------31 Chapter 4 Experimental Results-----------------34 4.1 Database of Experiment---------------------34 4.2 Rotor Faults Recognition Rate (Without Standardization and PCA)-----------------------35 4.3 Bearing Faults Recognition Rate (Without Standardization and PCA)-----------------------39 4.4 Rotor Faults Recognition Rate (With Standardization and PCA)---------------------------------------43 4.5 Bearing Faults Recognition Rate (With Standardization and PCA)---------------------------------------47 4.5.1 Bearing Faults Recognition Rate (d=5)----47 4.5.2 Bearing Faults Recognition Rate (d=6)----51 4.5.3 Bearing Faults Recognition Rate (d=7)----54 4.5.4 Bearing Faults Recognition Rate (d=8)----57 4.5.5 Bearing Faults Recognition Rate (d=9)----60 4.6 Comparison of Experimental Results for Rotor Faults Analysis---------------------------------------63 4.7 Comparison of Experimental Results for Bearing Faults Analysis---------------------------------------65 Chapter 5 Conclusions and Future Works---------68 5.1 Conclusions--------------------------------68 5.2 Future Works-------------------------------69 References-------------------------------------70

    [1] M. E. H. Benbouzid,“A Review of Induction Motors Signature Analysis as A Medium for Faults Detection,”IEEE Trans. on Industrial Electronics, vol. 47, no. 5, pp. 984-993, 2000.

    [2] C. Pezzani, P. Donolo, G. Bossio, M. Donolo, A. Guzmán, and S. E. Zocholl,“Detecting Broken Rotor Bars with Zero-Setting Protection,”IEEE Trans. on Industry Applications, vol. 50, no. 2, pp. 1373-1384, 2014.

    [3] S. Nandi, H. A. Toliyat, and X. Li,“Condition Monitoring and Fault Diagnosis of Electrical Motors-A Review, ”IEEE Trans. on Energy Conversion, vol. 20, no. 4, pp. 719-729, 2005.

    [4] Z. Zhang, Z. Ren, and W. Huang,“A Novel Detection Method of Motor Broken Rotor Bars Based on Wavelet Ridge,”IEEE Trans. on Energy Conversion, vol. 18, no. 3, pp. 417-423, 2003.

    [5] J. A. Antonino-Daviu, J. Pons-Llinares, and S. B. Lee,“Advanced Rotor Fault Diagnosis for Medium-Voltage Induction Motors via Continuous Transforms,”IEEE Trans. on Industry Applications, vol. 52, no. 5, pp. 4503-4509, 2016.

    [6] B. Xu, L. Sun, L. Xu, and G. Xu,“An ESPRIT-SAA-Based Detection Method for Broken Rotor Bar Fault in Induction Motors, ”IEEE Trans. on Energy Conversion, vol. 27, no. 3, pp. 654-660, 2012.

    [7] G. Y. Sizov, A. Sayed-Ahmed, C. C. Yeh, and N. A. O. Demerdash,“Analysis and Diagnostics of Adjacent and Nonadjacent Broken-Rotor-Bar Faults in Squirrel-Cage Induction Machines,”IEEE Trans. on Industrial Electronics, vol. 56, no. 11, pp. 4627-4641, 2009.

    [8] F. Briz, M. W. Degner, P. Garcia, and D. Bragado,“Broken Rotor Bar Detection in Line-Fed Induction Machines Using Complex Wavelet Analysis of Startup Transients,”IEEE Trans. on Industry Applications, vol. 44, no. 3, pp. 760-768, 2008.

    [9] M. Seera, C. P. Lim, D. Ishak, and H. Singh,“Fault Detection and Diagnosis of Induction Motors Using Motor Current Signature Analysis and a Hybrid FMM-CART Model,”IEEE Trans. on Neural Networks and Learning Systems, vol. 23, no. 1, pp. 97-108, 2012.

    [10] Y. H. Kim, Y. W. Youn, D. H. Hwang, J. H. Sun, and D. S. Kang,“High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors,”IEEE Trans. on Industrial Electronics, vol. 60, no. 9, pp. 4103-4117, 2013.

    [11] J. CusidÓCusido, L. Romeral, J. A. Ortega, J. A. Rosero, and A. G. Espinosa,“Fault Detection in Induction Machines Using Power Spectral Density in Wavelet Decomposition,”IEEE Trans. on Industrial Electronics, vol. 55, no. 2, pp. 633-643, 2008.

    [12] B. Xu, L. Sun, L. Xu, and G. Xu,“Improvement of the Hilbert Method via ESPRIT for Detecting Rotor Fault in Induction Motors at Low Slip,” IEEE Trans. on Energy Conversion, vol. 28, no. 1, pp. 225-233, 2013.

    [13] G. R. Bossio, C. H. D. Angelo, J. M. Bossio, C. M. Pezzani, and G. O. Garcia,“Separating Broken Rotor Bars and Load Oscillations on IM Fault Diagnosis Through the Instantaneous Active and Reactive Currents,”IEEE Trans. on Industrial Electronics, vol. 56, no. 11, pp. 4571-4580, 2009.

    [14] M. J. Picazo-Ródenas, J. Antonino-Daviu, V. Climente-Alarcon, R. Royo-Pastor, and A. Mota-Villar,“Combination of Noninvasive Approaches for General Assessment of Induction Motors,” IEEE Trans. on Industry Applications, vol. 51, no. 3, pp. 2172-2180, 2015.

    [15] G. Betta, C. Liguori, A. Paolillo, and A. Pietrosanto,“A DSP-Based FFT-Analyzer for the Fault Diagnosis of Rotating Machine Based on Vibration Analysis,”IEEE Trans. on Instrumentation and Measurement, vol. 51, no. 6, pp. 1316-1322, 2002.

    [16] V. Climente-Alarcon, J. A. Antonino-Daviu, F. Vedreño-Santos, and R. Puche-Panadero,“Vibration Transient Detection of Broken Rotor Bars by PSH Sidebands,”IEEE Trans. on Industry Applications, vol. 49, no. 6, pp. 2576-2582, 2013.

    [17] J. d. J. Rangel-Magdaleno, R. d. J. Romero-Troncoso, R. A. Osornio-Rios, E. Cabal-Yepez, and L. M. Contreras-Medina,“Novel Methodology for Online Half-Broken-Bar Detection on Induction Motors,”IEEE Trans. on Instrumentation and Measurement, vol. 58, no. 5, pp. 1690-1698, 2009.

    [18] C. Yang, T. J. Kang, D. Hyun, S. B. Lee, J. A. Antonino-Daviu, and J. Pons-Llinares,“Reliable Detection of Induction Motor Rotor Faults under the Rotor Axial Air Duct Influence,”IEEE Trans. on Industry Applications, vol. 50, no. 4, pp. 2493-2502, 2014.

    [19] J. Milimonfared, H. M. Kelk, S. Nandi, A. D. Minassians, and H. A. Toliyat,“A Novel Approach for Broken-Rotor-Bar Detection in Cage Induction Motors,”IEEE Trans. on Industry Applications, vol.35, no. 5, pp. 1000-1006, 1999.

    [20] L. Frosini, C. Harlişca, and L. Szabó,“Induction Machine Bearing Fault Detection by Means of Statistical Processing of the Stray Flux Measurement,” IEEE Trans. on Industrial Electronics, vol. 62, no. 3, pp. 1846-1854, 2015.

    [21] C. P. Mbo'o and K. Hameyer,“Fault Diagnosis of Bearing Damage by Means of the Linear Discriminant Analysis of Stator Current Features from the Frequency Selection,”IEEE Trans. on Industry Applications, vol. 52, no. 5, pp. 3861-3868, 2016.

    [22] M. A. Akbar, A. A. S. Ali, A. Amira, F. Bensaali, M. Benammar, M. Hassan, and A. Bermak,“An Empirical Study for PCA and LDA Based Feature Reduction for Gas Identification,”IEEE Sensors Journal, vol. 16, no. 14, pp. 5734-5746, 2016.

    [23] J. Hu, J. Si, B. P. Olson, and J. He,“Feature Detection in Motor Cortical Spikes by Principal Component Analysis,”IEEE Trans. on Neural Systems and Rehabilitation Engineering, vol. 13, no. 3, pp. 256-262, 2005.

    [24] Y. Fang, H. Li, Y. Ma, K. Liang, Y. Hu, S. Zhang, and H. Wang,“Dimensionality Reduction of Hyperspectral Images Based on Robust Spatial Information Using Locally Linear Embedding,”IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 10, pp. 1712-1716, 2014.

    [25] X. Jin, M. Zhao, T. W. S. Chow, and M. Pecht,“Motor Bearing Fault Diagnosis Using Trace Ratio Linear Discriminant Analysis,”IEEE Trans. on Industrial Electronics, vol. 61, no. 5, pp. 2441-2451, 2014.

    [26] Z. Lai, W. K. Wong, Y. Xu, J. Yang, and D. Zhang,“Approximate Orthogonal Sparse Embedding for Dimensionality Reduction,”IEEE Trans. on Neural Networks and Learning Systems, vol. 27, no. 4, pp. 723-735, 2016.

    [27] L. I. Kuncheva and W. J. Faithfull,“PCA Feature Extraction for Change Detection in Multidimensional Unlabeled Data,”IEEE Trans. on Neural Networks and Learning Systems, vol. 25, no. 1, pp. 69-80, 2014.

    [28] V. Bewick, L. Cheek, and J. Ball,“Statistics Review 14: Logistic Regression,” Critical Care, vol. 9, no. 1, pp. 112-118, 2005.

    [29] C. M. Bishop,“Pattern Recognition and Machine Learning,”Springer, 2006.

    [30] A. Kusiak and A. Verma,“A Data-Mining Approach to Monitoring Wind Turbines,” IEEE Trans. on Sustainable Energy, vol. 3, no. 1, pp. 150-157, 2012.

    [31] Q. Yao, J. Wang, L. Yang, H. Su, and G. Zhang,“A Fault Diagnosis Method of Engine Rotor Based on Random Forests,”2016 IEEE International Conference on Prognostics and Health Management (ICPHM), pp. 1-4, 2016.

    [32] X. Yang, R. Yan, and R. X. Gao,“Induction Motor Fault Diagnosis Based on Ensemble Classifiers,”2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, pp. 1-5, 2016.

    [33] W. Yan,“Application of Random Forest to Aircraft Engine Fault Diagnosis,”The Proceedings of the Multiconference on Computational Engineering in Systems Applications, vol. 1, pp. 468-475, 2006.

    [34] A. M. Shah and B. R. Bhalja,“Fault Discrimination Scheme for Power Transformer Using Random Forest Technique,”IET Generation, Transmission & Distribution, vol. 10, no. 6, pp. 1431-1439, 2016.

    [35] X. Chen, H. Cui, and L. Luo,“Fault Diagnosis of Transformer Based on Random Forest,”2011 Fourth International Conference on Intelligent Computation Technology and Automation, vol. 1, pp. 132-134, 2011.

    [36] J. M. Syu,“Diagnosis System of Bearing Fault for Three Phase Induction Motor Based on Support Vector Machine,”Master’s Thesis, Department of Electrical Engineering, National Cheng Kung University, 2015.

    [37] W. T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel, W. W. Lang, G. C. Maling, D. E. Nelson, C. M. Rader, and P. D. Welch,“What is the Fast Fourier Transform?,”Proceedings of the IEEE, vol. 55, no. 10, pp. 1664-1674, 1967.

    [38] J. W. Cooley and J. W. Tukey,“An Algorithm for the Machine Calculation of Complex Fourier Series,”Mathematics of Computation, vol. 19, no. 90, pp. 297-301, 1965.

    [39] J. W. Cooley, P. A. W. Lewis, and P. D. Welch,“Historical Notes on the Fast Fourier Transform,”Proceedings of the IEEE, vol. 55, no. 10, pp. 1675-1677, 1967.

    [40] P. Duhamel and M. Vetterli,“Fast Fourier Transforms: A Tutorial Review and A State of the Art,”Signal Processing 19, pp. 259-299, 1990.

    [41] B. A. Olshausen,“Aliasing,”PSC 129 - Sensory processes, 2000.

    [42] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,“Discrete-Time Signal Processing,” Prentice Hall, 1999.

    [43] K. Pearson,“On Lines and Planes of Closest Fit to Systems of Points in Space,” Philosophical Magazine, vol. 2, no. 6, pp. 559-572, 1901.

    [44] A. Morell, A. Correa, M. Barceló, and J. L. Vicario,“Data Aggregation and Principal Component Analysis in WSNs,”IEEE Trans. on Wireless Communications, vol. 15, no. 6, pp. 3908-3919, 2016.

    [45] S. Ahmadkhani and P. Adibi,“Face Recognition Using Supervised Probabilistic Principal Component Analysis Mixture Model in Dimensionality Reduction without Loss Framework,”IET Computer Vision, vol. 10, no. 3, pp. 193-201, 2016.

    [46] C. Dai, Z. Liu, K. Hu, and K. Huang,“Fault Diagnosis Approach of Traction Transformers in High-Speed Railway Combining Kernel Principal Component Analysis with Random Forest,”IET Electrical Systems in Transportation, vol. 6, no. 3, pp. 202-206, 2016.

    [47] J. Wu, S. Qiu, R. Zeng, Y. Kong, L. Senhadji, and H. Shu,“Multilinear Principal Component Analysis Network for Tensor Object Classification,” IEEE Access, vol. 5, pp. 3322-3331, 2017.

    [48] S. H. Wang, T. M. Zhan, Y. Chen, Y. Zhang, M. Yang, H. M. Lu, H. N. Wang, B. Liu, and P. Phillips,“Multiple Sclerosis Detection Based on Biorthogonal Wavelet Transform, RBF Kernel Principal Component Analysis, and Logistic Regression,” IEEE Access, vol. 4, pp. 7567-7576, 2016.

    [49] I. T. Jolliffe,“Principal Component Analysis,”Springer, 2002.

    [50] L. Breiman,“Random Forests,”Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

    [51] X. Chen, H. Cui, and L. Luo,“Fault Diagnosis of Transformer Based on Random Forest,”2011 Fourth International Conference on Intelligent Computation Technology and Automation, vol. 1, pp. 132-134, 2011.

    [52] Z. Yang and Q. Tan,“The Application of Random Forest and Morphology Analysis to Fault Diagnosis on the Chain Box of Ships,”2010 Third International Symposium on Intelligent Information Technology and Security Informatics, pp. 315-319, 2010.

    [53] N. Quadrianto and Z. Ghahramani,“A Very Simple Safe-Bayesian Random Forest,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 37, no. 6, pp. 1297-1303, 2015.

    [54] A. Swetapadma and A. Yadav,“A Novel Decision Tree Regression-Based Fault Distance Estimation Scheme for Transmission Lines,”IEEE Trans. on Power Delivery, vol. 32, no. 1, pp. 234-245, 2017.

    [55] F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu,“Adaptive Board-Level Functional Fault Diagnosis Using Incremental Decision Trees,”IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 2, pp. 323-336, 2016.

    [56] Z. Chen, Y. Zheng, K. Chen, H. Li, and J. Jian,“Concentration Estimator of Mixed VOC Gases Using Sensor Array with Neural Networks and Decision Tree Learning,” IEEE Sensors Journal, vol. 17, no. 6, pp. 1884-1892, 2017.

    [57] S. B. Kotsiantis,“Supervised Machine Learning: A Review of Classification Techniques,”An International Journal of Computing and Informatics, vol. 31, pp. 249-268, 2007.

    [58] T. Hastie, R. Tibshirani, and J. Friedman,“The Elements of Statistical Learning Data Mining, Inference, and Prediction,”Springer, 2009.

    [59] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen,“Classification and Regression Trees”Taylor & Francis, 1984

    [60] S. Gey and T. Mary-Huard,“Risk Bounds for Embedded Variable Selection in Classification Trees,”IEEE Trans. on Information Theory, vol. 60, no. 3, pp. 1688-1699, 2014.

    [61] C. González, J. Mira-McWilliams, and I. Juárez,“Important Variable Assessment and Electricity Price Forecasting Based on Regression Tree Models: Classification and Regression Trees, Bagging and Random Forests,”IET Generation, Transmission & Distribution, vol. 9, no. 11, pp. 1120-1128, 2015.

    [62] L. Breiman,“Bagging Predictors,”Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.

    [63] D. Gao, Y. X. Zhang, and Y. H. Zhao,“Random Forest Algorithm for Classification of Multiwavelength Data,”Research in Astronomy and Astrophysics, vol. 9, no. 2, pp. 220-226, 2009.

    [64] S. Suthaharan,“Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning,”Springer, 2016.

    [65] C. W. Kuo,“Application of Random Forests for Real-Time River Stage Forecasting,”Master’s Thesis, Department of Hydraulic and Ocean Engineering, National Cheng Kung University, 2014.

    [66] J. S. Bartunek, M. Nilsson, B. Sallberg, and I. Claesson,“Adaptive Fingerprint Image Enhancement with Emphasis on Preprocessing of Data,”IEEE Trans. on Image Processing, vol. 22, no. 2, pp. 644-656, 2013.

    [67] W. Liu, S. Liu, Q. Gu, J. Chen, X. Chen, and D. Chen,“Empirical Studies of A Two-Stage Data Preprocessing Approach for Software Fault Prediction,”IEEE Trans. on Reliability, vol. 65, no. 1, pp. 38-53, 2016.

    [68] L. Zheng, W. Hu, and Y. Min,“Raw Wind Data Preprocessing: A Data-Mining Approach,”IEEE Trans. on Sustainable Energy, vol. 6, no. 1, pp. 11-19, 2015.

    下載圖示 校內:2022-08-04公開
    校外:2022-08-04公開
    QR CODE